Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths
- URL: http://arxiv.org/abs/2405.08091v1
- Date: Mon, 13 May 2024 18:15:06 GMT
- Title: Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths
- Authors: Lukas Husel, Julian Trapp, Johannes Scherzer, Xiaojian Wu, Peng Wang, Jacob Fortner, Manuel Nutz, Thomas Hümmer, Borislav Polovnikov, Michael Förg, David Hunger, YuHuang Wang, Alexander Högele,
- Abstract summary: We report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity.
Our results highlight a promising strategy to attain optimized non-classical light sources.
- Score: 35.28250491768256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling. The efficiency of the coupled system outperforms spectral or temporal filtering, and the photon indistinguishability is increased by more than two orders of magnitude compared to the free-space limit. Our results highlight a promising strategy to attain optimized non-classical light sources.
Related papers
- Experimental entanglement swapping through single-photon $χ^{(2)}$ nonlinearity [0.8030359871216615]
We demonstrate a first entanglement swapping using sum-frequency generation (SFG) between single photons in a $chi(2)$-nonlinear optical waveguide.
Our results confirm a lower bound 0.770(76) for the swapped state's fidelity, surpassing the classical limit of 0.5 successfully.
arXiv Detail & Related papers (2024-11-26T09:44:50Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Room-temperature addressing of single rare-earth atoms in optical fiber [0.3593253884517571]
We have experimentally performed the single-site optical spectroscopy and optical addressing of a single rare-earth atom in an amorphous silica optical fiber at room temperature.
The ability to address single RE atoms at room temperature provides a very stable and cost-effective technical platform for the realization of a solid-state system for a large-scale quantum optical network.
arXiv Detail & Related papers (2023-10-17T03:40:35Z) - Ultrafast Measurement of Energy-Time Entanglement with an Optical Kerr
Shutter [0.0]
We implement optical Kerr shutters in single mode fibers to map out the sub-picosecond correlations of energy-time entangled photon pairs.
Measurements are used to verify entanglement by means of the violation of a time-bandwidth inequality.
arXiv Detail & Related papers (2023-05-23T20:02:20Z) - High quality entanglement distribution through telecommunication fiber
using near-infrared non-degenerate photon pairs [73.4643018649031]
In urban environments, the quantum channel in the form of telecommunication optical fiber (confirming to ITU G.652D standards) are available.
We investigate the possibility that for campus-type communications, entangled photons prepared in the Near-Infrared Range (NIR) can be transmitted successfully.
arXiv Detail & Related papers (2022-09-09T03:23:11Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Detecting Infrared Single Photons with Near-Unity System Detection
Efficiency [0.0]
Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing.
We show novel superconducting nanowire single photon detectors fabricated on membranes with 94-99.5 (plus minus 2.07%) system detection efficiency.
We discuss the prime challenges in optical design, device fabrication as well as accurate and reliable detection efficiency measurements to achieve high performance single-photon detection.
arXiv Detail & Related papers (2020-11-17T20:56:39Z) - High-fidelity, low-latency polarization quantum state transmissions over
a hollow-core conjoined-tube fibre at around 800 nm [9.633003822258685]
We show high-fidelity (0.98) single-photon transmission and distribution of entangled photons over a conjoined-tube hollow-core fibre (CTF)
Our CTF realized the combined merits of low loss, high spatial mode purity, low polarization degradation, and low chromatic dispersion.
We also demonstrate single-photon low latency (99.96% speed of light in vacuum) transmission, thus paving the way for extensive uses of links in versatile polarization-based quantum information processing.
arXiv Detail & Related papers (2020-06-23T03:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.