論文の概要: Estimating Direct and Indirect Causal Effects of Spatiotemporal Interventions in Presence of Spatial Interference
- arxiv url: http://arxiv.org/abs/2405.08174v1
- Date: Mon, 13 May 2024 20:39:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 15:37:23.385260
- Title: Estimating Direct and Indirect Causal Effects of Spatiotemporal Interventions in Presence of Spatial Interference
- Title(参考訳): 空間干渉の有無を考慮した時空間干渉の直接因果効果と間接因果効果の推定
- Authors: Sahara Ali, Omar Faruque, Jianwu Wang,
- Abstract要約: まず, 空間干渉の概念を, 未測定条件を仮定して拡張することで, 時間変化による治療結果に対する空間干渉の概念を拡張した。
次に、時間的因果推論のための深層学習に基づく潜在的結果モデルを提案する。
U-Netアーキテクチャのパワーを利用して、時間とともに空間的干渉を捉えながら、時間変化による干渉を低減するために潜時因子モデリングを利用する。
- 参考スコア(独自算出の注目度): 0.46052594866569146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial interference (SI) occurs when the treatment at one location affects the outcomes at other locations. Accounting for spatial interference in spatiotemporal settings poses further challenges as interference violates the stable unit treatment value assumption, making it infeasible for standard causal inference methods to quantify the effects of time-varying treatment at spatially varying outcomes. In this paper, we first formalize the concept of spatial interference in case of time-varying treatment assignments by extending the potential outcome framework under the assumption of no unmeasured confounding. We then propose our deep learning based potential outcome model for spatiotemporal causal inference. We utilize latent factor modeling to reduce the bias due to time-varying confounding while leveraging the power of U-Net architecture to capture global and local spatial interference in data over time. Our causal estimators are an extension of average treatment effect (ATE) for estimating direct (DATE) and indirect effects (IATE) of spatial interference on treated and untreated data. Being the first of its kind deep learning based spatiotemporal causal inference technique, our approach shows advantages over several baseline methods based on the experiment results on two synthetic datasets, with and without spatial interference. Our results on real-world climate dataset also align with domain knowledge, further demonstrating the effectiveness of our proposed method.
- Abstract(参考訳): 空間干渉は、ある場所での治療が他の場所での結果に影響を与えるときに起こる。
時空間における空間干渉の会計は、干渉が安定した単位処理値の仮定に反するので、空間的に異なる結果における時間変化処理の効果を定量化するための標準的な因果推論法では不可能である。
本稿では, 空間干渉という概念を, 不測の共起を前提に, 潜在的結果の枠組みを拡張して, 時間変化による治療課題における空間干渉の概念を定式化する。
次に、時空間因果推論のための深層学習に基づく潜在的な結果モデルを提案する。
U-Netアーキテクチャのパワーを活用しながら、遅延因子モデルを用いて時間的変化によるバイアスを低減し、時間とともにグローバルかつ局所的な空間干渉を捕捉する。
我々の因果推定器は、直接的(DATE)と間接的(IATE)を推定するための平均治療効果(ATE)の拡張である。
本手法は,深層学習に基づく時空間因果推論手法としては初めてであり,空間的干渉を伴わない2つの合成データセットの実験結果に基づいて,いくつかの基本手法の利点を示す。
実世界の気候データセットに関する我々の結果は、ドメイン知識とも一致し、提案手法の有効性をさらに実証する。
関連論文リスト
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
ACI(Causal Inference with Interference)におけるアクティブラーニング手法について紹介する。
ACIはガウス過程を用いて、隣人の治療課題の連続的な測定の関数として直接的および余分な処理効果を柔軟にモデル化する。
データ要求の低減による精度の高い効果推定の実現可能性を示す。
論文 参考訳(メタデータ) (2024-02-20T04:13:59Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
結果に対する治療の平均因果効果(ACE)を評価することは、しばしば観察研究における要因の相違によって引き起こされる課題を克服することを伴う。
本稿では,目標最小損失推定理論に基づいて,正面基準の新たな推定手法を提案する。
本研究では,早期学業成績が今後の年収に与える影響を明らかにするために,これらの推定装置の適用性を示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Causal Message Passing: A Method for Experiments with Unknown and General Network Interference [5.294604210205507]
複雑で未知のネットワーク干渉に対応する新しいフレームワークを提案する。
我々のフレームワークは因果的メッセージパッシングと呼ばれ、高次元近似的メッセージパッシング手法に基づいている。
本手法の有効性を5つの数値シナリオで示す。
論文 参考訳(メタデータ) (2023-11-14T17:31:50Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Causal Inference under Networked Interference and Intervention Policy
Enhancement [35.149125599812706]
ランダム化実験のデータから個々の治療効果を推定することは因果推論において重要な課題である。
通常、ランダム化実験や相互接続された単位による観測実験では、干渉下でのみ治療反応を観察することができる。
本稿では,グラフの依存性を捕捉する強力なツールであるGNNを用いて,一般的なネットワーク干渉下での因果効果の推定について検討する。
論文 参考訳(メタデータ) (2020-02-20T00:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。