Modeling of Time-varying Wireless Communication Channel with Fading and Shadowing
- URL: http://arxiv.org/abs/2405.08199v1
- Date: Mon, 13 May 2024 21:30:50 GMT
- Title: Modeling of Time-varying Wireless Communication Channel with Fading and Shadowing
- Authors: Lee Youngmin, Ma Xiaomin, Lang S. I. D Andrew,
- Abstract summary: We propose a new approach that combines a deep learning neural network with a mixture density network model to derive the conditional probability density function of receiving power.
Experiments on Nakagami fading channel model and Log-normal shadowing channel model with path loss and noise show that the new approach is more statistically accurate, faster, and more robust than the previous deep learning-based channel models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The real-time quantification of the effect of a wireless channel on the transmitting signal is crucial for the analysis and the intelligent design of wireless communication systems for various services. Recent mechanisms to model channel characteristics independent of coding, modulation, signal processing, etc., using deep learning neural networks are promising solutions. However, the current approaches are neither statistically accurate nor able to adapt to the changing environment. In this paper, we propose a new approach that combines a deep learning neural network with a mixture density network model to derive the conditional probability density function (PDF) of receiving power given a communication distance in general wireless communication systems. Furthermore, a deep transfer learning scheme is designed and implemented to allow the channel model to dynamically adapt to changes in communication environments. Extensive experiments on Nakagami fading channel model and Log-normal shadowing channel model with path loss and noise show that the new approach is more statistically accurate, faster, and more robust than the previous deep learning-based channel models.
Related papers
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - A Universal Deep Neural Network for Signal Detection in Wireless Communication Systems [35.07773969966621]
Deep learning (DL) has been emerging as a promising approach for channel estimation and signal detection in wireless communications.
To cope with the dynamic nature of the wireless channel, DL methods must be re-trained on newly non-aged collected data.
This paper proposes a novel universal deep neural network (Uni-DNN) that can achieve high detection performance in various wireless environments without retraining the model.
arXiv Detail & Related papers (2024-04-03T11:21:10Z) - Blind and Channel-agnostic Equalization Using Adversarial Networks [4.9755999934202535]
We propose a novel adaptive equalizer scheme, which exploits the prosperous advances in deep learning by training an equalizer with an adversarial network.
The proposed approach is independent of the equalizer topology and enables the application of powerful neural network based equalizers.
arXiv Detail & Related papers (2022-09-15T13:11:18Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
We deploy a general residual convolutional neural network to achieve channel estimation in a downlink scenario.
Compared with other deep learning methods for channel estimation, our results suggest improved mean squared error computation.
arXiv Detail & Related papers (2022-01-24T19:55:10Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Predicting the Path Loss of Wireless Channel Models Using Machine
Learning Techniques in MmWave Urban Communications [13.026091318474785]
Classic wireless communication channel modeling is performed using Deterministic and channel methodologies.
Machine learning (ML) emerges to revolutionize system design for 5G and beyond.
arXiv Detail & Related papers (2020-05-02T08:19:18Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.