A Universal Deep Neural Network for Signal Detection in Wireless Communication Systems
- URL: http://arxiv.org/abs/2404.02648v1
- Date: Wed, 3 Apr 2024 11:21:10 GMT
- Title: A Universal Deep Neural Network for Signal Detection in Wireless Communication Systems
- Authors: Khalid Albagami, Nguyen Van Huynh, Geoffrey Ye Li,
- Abstract summary: Deep learning (DL) has been emerging as a promising approach for channel estimation and signal detection in wireless communications.
To cope with the dynamic nature of the wireless channel, DL methods must be re-trained on newly non-aged collected data.
This paper proposes a novel universal deep neural network (Uni-DNN) that can achieve high detection performance in various wireless environments without retraining the model.
- Score: 35.07773969966621
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, deep learning (DL) has been emerging as a promising approach for channel estimation and signal detection in wireless communications. The majority of the existing studies investigating the use of DL techniques in this domain focus on analysing channel impulse responses that are generated from only one channel distribution such as additive white Gaussian channel noise and Rayleigh channels. In practice, to cope with the dynamic nature of the wireless channel, DL methods must be re-trained on newly non-aged collected data which is costly, inefficient, and impractical. To tackle this challenge, this paper proposes a novel universal deep neural network (Uni-DNN) that can achieve high detection performance in various wireless environments without retraining the model. In particular, our proposed Uni-DNN model consists of a wireless channel classifier and a signal detector which are constructed by using DNNs. The wireless channel classifier enables the signal detector to generalise and perform optimally for multiple wireless channel distributions. In addition, to further improve the signal detection performance of the proposed model, convolutional neural network is employed. Extensive simulations using the orthogonal frequency division multiplexing scheme demonstrate that the bit error rate performance of our proposed solution can outperform conventional DL-based approaches as well as least square and minimum mean square error channel estimators in practical low pilot density scenarios.
Related papers
- Generating High Dimensional User-Specific Wireless Channels using Diffusion Models [28.270917362301972]
This paper introduces a novel method for generating synthetic wireless channel data using diffusion-based models.
We generate synthetic high fidelity channel samples using user positions as conditional inputs, creating larger augmented datasets to overcome measurement scarcity.
arXiv Detail & Related papers (2024-09-05T22:08:28Z) - Modeling of Time-varying Wireless Communication Channel with Fading and Shadowing [0.0]
We propose a new approach that combines a deep learning neural network with a mixture density network model to derive the conditional probability density function of receiving power.
Experiments on Nakagami fading channel model and Log-normal shadowing channel model with path loss and noise show that the new approach is more statistically accurate, faster, and more robust than the previous deep learning-based channel models.
arXiv Detail & Related papers (2024-05-13T21:30:50Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Graph Neural Networks over the Air for Decentralized Tasks in Wireless Networks [6.007238205454907]
This paper studies the impact of channel impairments on the performance of graph neural networks over the air (AirGNNs)
AirGNNs modify graph convolutional operations that shift graph signals over random communication graphs to take into account channel fading and noise.
Experiments on decentralized source localization and multi-robot flocking show superior performance of AirGNNs over wireless communication channels.
arXiv Detail & Related papers (2023-02-16T17:40:23Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
We deploy a general residual convolutional neural network to achieve channel estimation in a downlink scenario.
Compared with other deep learning methods for channel estimation, our results suggest improved mean squared error computation.
arXiv Detail & Related papers (2022-01-24T19:55:10Z) - Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model [20.670058030653458]
Human motion recognition (HMR) based on wireless sensing is a low-cost technique for scene understanding.
Current HMR systems adopt support vector machines (SVMs) and convolutional neural networks (CNNs) to classify radar signals.
This paper proposes a deep spectrogram network (DSN) by leveraging the residual mapping technique to enhance the HMR performance.
arXiv Detail & Related papers (2021-04-21T06:33:01Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Power Control for a URLLC-enabled UAV system incorporated with DNN-Based
Channel Estimation [82.16169603954663]
This letter is concerned with power control for ultra-reliable low-latency communications (URLLC) enabled unmanned aerial vehicle (UAV) system incorporated with deep neural network (DNN) based channel estimation.
arXiv Detail & Related papers (2020-11-14T02:31:04Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.