論文の概要: Interpreting Latent Student Knowledge Representations in Programming Assignments
- arxiv url: http://arxiv.org/abs/2405.08213v1
- Date: Mon, 13 May 2024 22:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 15:27:38.640611
- Title: Interpreting Latent Student Knowledge Representations in Programming Assignments
- Title(参考訳): プログラミング・アサインメントにおける潜在学生の知識表現の解釈
- Authors: Nigel Fernandez, Andrew Lan,
- Abstract要約: 本稿では,学生の潜在的知識状態の解釈を促す情報正規化オープンエンドアイテム応答理論モデルを提案する。
本稿では,InfoOIRTが学生のコードを正確に生成し,解釈可能な学生の知識表現につながることを示す。
- 参考スコア(独自算出の注目度): 2.184775414778289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in artificial intelligence for education leverage generative large language models, including using them to predict open-ended student responses rather than their correctness only. However, the black-box nature of these models limits the interpretability of the learned student knowledge representations. In this paper, we conduct a first exploration into interpreting latent student knowledge representations by presenting InfoOIRT, an Information regularized Open-ended Item Response Theory model, which encourages the latent student knowledge states to be interpretable while being able to generate student-written code for open-ended programming questions. InfoOIRT maximizes the mutual information between a fixed subset of latent knowledge states enforced with simple prior distributions and generated student code, which encourages the model to learn disentangled representations of salient syntactic and semantic code features including syntactic styles, mastery of programming skills, and code structures. Through experiments on a real-world programming education dataset, we show that InfoOIRT can both accurately generate student code and lead to interpretable student knowledge representations.
- Abstract(参考訳): 人工知能の教育における最近の進歩は、生成的大言語モデルを利用して、その正確性のみではなく、オープンエンドの学生の反応を予測している。
しかしながら、これらのモデルのブラックボックスの性質は、学習した学生の知識表現の解釈可能性を制限する。
本稿では,情報正規化オープンエンドアイテム応答理論モデルであるInfoOIRTを提示することにより,潜在学生の知識表現の解釈を初めて行う。
InfoOIRTは、単純な事前分布で強制される潜伏知識状態の固定されたサブセットと生成された学生コードの間の相互情報を最大化することで、モデルが、構文スタイル、プログラミングスキルの熟達、コード構造を含む有能な構文および意味的コード機能の非絡み合った表現を学習することを奨励する。
実世界のプログラミング教育データセットの実験を通して、InfoOIRTは学生のコードを正確に生成し、解釈可能な学生の知識表現へと導くことができることを示す。
関連論文リスト
- SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
知識追跡(KT)は、学生が次の質問に正しく答えるかどうかを判断することを目的としている。
大規模言語モデルを用いた構造認識帰納的知識追跡モデル(SINKT)
SINKTは、学生の知識状態と質問表現とを相互作用させることで、対象の質問に対する学生の反応を予測する。
論文 参考訳(メタデータ) (2024-07-01T12:44:52Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
本稿では,学生の記録から学生の知識をトラッキングし,自然言語による説明を提供する認知誘導フレームワークを提案する。
3つの広く使われているデータセットによる実験結果から、LLMは競合する深層知識追跡手法に匹敵する、あるいは優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-23T10:07:21Z) - Enhancing Student Performance Prediction on Learnersourced Questions
with SGNN-LLM Synergy [11.735587384038753]
本稿では,SGNN(Signed Graph Neural Networks)とLLM(Large Language Model)を統合化するための革新的な戦略を提案する。
提案手法では, 学生の回答を包括的にモデル化するための署名付き二部グラフを用いて, 雑音耐性を高めるコントラスト学習フレームワークを補完する。
論文 参考訳(メタデータ) (2023-09-23T23:37:55Z) - How to Do Things with Deep Learning Code [0.0]
我々は,一般ユーザーが深層学習システムの行動と対話し,直接的に対話する手段に注意を向ける。
問題となっているのは、大規模言語モデルの責任ある応用について、社会技術的に理解されたコンセンサスを達成する可能性である。
論文 参考訳(メタデータ) (2023-04-19T03:46:12Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
モデルパラメータに大量の知識を格納することは、絶え間なく増加する知識とリソースの要求を考えると、準最適である、と我々は主張する。
LM-CORE - これを実現するための一般的なフレームワークで、外部の知識ソースから言語モデルのトレーニングをテキストデカップリングすることができる。
実験結果から, LM-COREは知識探索タスクにおいて, 最先端の知識強化言語モデルよりも大きく, 堅牢な性能を実現していることがわかった。
論文 参考訳(メタデータ) (2022-08-12T18:59:37Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
知識強化事前学習言語モデル(英: Knowledge-Enhanced Pre-trained Language Models, KEPLM)は、知識グラフから3重関係を注入して言語理解能力を向上させる事前学習モデルである。
従来の研究は、知識グラフから得られた知識を表現するための知識エンコーダとモデルを統合する。
本稿では,事前学習,微調整,推論段階における事前学習言語モデルの知識注入過程を分解する,DKPLMという新しいKEPLMを提案する。
論文 参考訳(メタデータ) (2021-12-02T08:19:42Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - JAKET: Joint Pre-training of Knowledge Graph and Language Understanding [73.43768772121985]
本稿では,知識グラフと言語の両方をモデル化する新しい事前学習フレームワークであるJAKETを提案する。
知識モジュールと言語モジュールは相互に支援するための重要な情報を提供する。
我々の設計により、事前学習されたモデルは、新しいドメインの見知らぬ知識グラフに容易に適応できる。
論文 参考訳(メタデータ) (2020-10-02T05:53:36Z) - CoLAKE: Contextualized Language and Knowledge Embedding [81.90416952762803]
文脈型言語と知識埋め込み(CoLAKE)を提案する。
CoLAKEは、言語と知識の両方の文脈化された表現を、拡張された目的によって共同で学習する。
知識駆動タスク、知識探索タスク、言語理解タスクについて実験を行う。
論文 参考訳(メタデータ) (2020-10-01T11:39:32Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。