Could Chemical LLMs benefit from Message Passing
- URL: http://arxiv.org/abs/2405.08334v1
- Date: Tue, 14 May 2024 06:09:08 GMT
- Title: Could Chemical LLMs benefit from Message Passing
- Authors: Jiaqing Xie, Ziheng Chi,
- Abstract summary: We propose two strategies to evaluate whether an information integration can enhance the performance: contrast learning and fusion.
Our empirical analysis reveals that the integration approaches exhibit superior performance compared to baselines when applied to smaller molecular graphs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained language models (LMs) showcase significant capabilities in processing molecular text, while concurrently, message passing neural networks (MPNNs) demonstrate resilience and versatility in the domain of molecular science. Despite these advancements, we find there are limited studies investigating the bidirectional interactions between molecular structures and their corresponding textual representations. Therefore, in this paper, we propose two strategies to evaluate whether an information integration can enhance the performance: contrast learning, which involves utilizing an MPNN to supervise the training of the LM, and fusion, which exploits information from both models. Our empirical analysis reveals that the integration approaches exhibit superior performance compared to baselines when applied to smaller molecular graphs, while these integration approaches do not yield performance enhancements on large scale graphs.
Related papers
- FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
We introduce a Multi-Modal Fusion (MMF) framework that harnesses the analytical prowess of Graph Neural Networks (GNNs) and the linguistic generative and predictive abilities of Large Language Models (LLMs)
Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting.
arXiv Detail & Related papers (2024-08-27T11:10:39Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - LLM and GNN are Complementary: Distilling LLM for Multimodal Graph Learning [26.980622926162933]
We present an innovative framework that utilizes multimodal molecular data to extract insights from Large Language Models (LLMs)
We introduce GALLON, a framework that synergizes the capabilities of LLMs and Graph Neural Networks (GNNs) by distilling multimodal knowledge into a unified Multilayer Perceptron (MLP)
arXiv Detail & Related papers (2024-06-03T06:33:51Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - MolTC: Towards Molecular Relational Modeling In Language Models [28.960416816491392]
We propose a novel framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory termed MolTC.
Our experiments, conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines.
arXiv Detail & Related papers (2024-02-06T07:51:56Z) - Improving Molecular Properties Prediction Through Latent Space Fusion [9.912768918657354]
We present a multi-view approach that combines latent spaces derived from state-of-the-art chemical models.
Our approach relies on two pivotal elements: the embeddings derived from MHG-GNN, which represent molecular structures as graphs, and MoLFormer embeddings rooted in chemical language.
We demonstrate the superior performance of our proposed multi-view approach compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2023-10-20T20:29:32Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.