Improving Molecular Properties Prediction Through Latent Space Fusion
- URL: http://arxiv.org/abs/2310.13802v1
- Date: Fri, 20 Oct 2023 20:29:32 GMT
- Title: Improving Molecular Properties Prediction Through Latent Space Fusion
- Authors: Eduardo Soares, Akihiro Kishimoto, Emilio Vital Brazil, Seiji Takeda,
Hiroshi Kajino, Renato Cerqueira
- Abstract summary: We present a multi-view approach that combines latent spaces derived from state-of-the-art chemical models.
Our approach relies on two pivotal elements: the embeddings derived from MHG-GNN, which represent molecular structures as graphs, and MoLFormer embeddings rooted in chemical language.
We demonstrate the superior performance of our proposed multi-view approach compared to existing state-of-the-art methods.
- Score: 9.912768918657354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained Language Models have emerged as promising tools for predicting
molecular properties, yet their development is in its early stages,
necessitating further research to enhance their efficacy and address challenges
such as generalization and sample efficiency. In this paper, we present a
multi-view approach that combines latent spaces derived from state-of-the-art
chemical models. Our approach relies on two pivotal elements: the embeddings
derived from MHG-GNN, which represent molecular structures as graphs, and
MoLFormer embeddings rooted in chemical language. The attention mechanism of
MoLFormer is able to identify relations between two atoms even when their
distance is far apart, while the GNN of MHG-GNN can more precisely capture
relations among multiple atoms closely located. In this work, we demonstrate
the superior performance of our proposed multi-view approach compared to
existing state-of-the-art methods, including MoLFormer-XL, which was trained on
1.1 billion molecules, particularly in intricate tasks such as predicting
clinical trial drug toxicity and inhibiting HIV replication. We assessed our
approach using six benchmark datasets from MoleculeNet, where it outperformed
competitors in five of them. Our study highlights the potential of latent space
fusion and feature integration for advancing molecular property prediction. In
this work, we use small versions of MHG-GNN and MoLFormer, which opens up an
opportunity for further improvement when our approach uses a larger-scale
dataset.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - MolTC: Towards Molecular Relational Modeling In Language Models [28.960416816491392]
We propose a novel framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory termed MolTC.
Our experiments, conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines.
arXiv Detail & Related papers (2024-02-06T07:51:56Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Improving Molecular Pretraining with Complementary Featurizations [20.86159731100242]
Molecular pretraining is a paradigm to solve a variety of tasks in computational chemistry and drug discovery.
We show that different featurization techniques convey chemical information differently.
We propose a simple and effective MOlecular pretraining framework with COmplementary featurizations (MOCO)
arXiv Detail & Related papers (2022-09-29T21:11:09Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.