Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning
- URL: http://arxiv.org/abs/2408.14964v1
- Date: Tue, 27 Aug 2024 11:10:39 GMT
- Title: Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning
- Authors: Sakhinana Sagar Srinivas, Venkataramana Runkana,
- Abstract summary: We introduce a Multi-Modal Fusion (MMF) framework that harnesses the analytical prowess of Graph Neural Networks (GNNs) and the linguistic generative and predictive abilities of Large Language Models (LLMs)
Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of chemistry, the objective is to create novel molecules with desired properties, facilitating accurate property predictions for applications such as material design and drug screening. However, existing graph deep learning methods face limitations that curb their expressive power. To address this, we explore the integration of vast molecular domain knowledge from Large Language Models (LLMs) with the complementary strengths of Graph Neural Networks (GNNs) to enhance performance in property prediction tasks. We introduce a Multi-Modal Fusion (MMF) framework that synergistically harnesses the analytical prowess of GNNs and the linguistic generative and predictive abilities of LLMs, thereby improving accuracy and robustness in predicting molecular properties. Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting. Furthermore, our approach effectively addresses distributional shifts, a common challenge in real-world applications, and showcases the efficacy of learning cross-modal representations, surpassing state-of-the-art baselines on benchmark datasets for property prediction tasks.
Related papers
- All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - LLM and GNN are Complementary: Distilling LLM for Multimodal Graph Learning [26.980622926162933]
We present an innovative framework that utilizes multimodal molecular data to extract insights from Large Language Models (LLMs)
We introduce GALLON, a framework that synergizes the capabilities of LLMs and Graph Neural Networks (GNNs) by distilling multimodal knowledge into a unified Multilayer Perceptron (MLP)
arXiv Detail & Related papers (2024-06-03T06:33:51Z) - Could Chemical LLMs benefit from Message Passing [0.0]
We propose two strategies to evaluate whether an information integration can enhance the performance: contrast learning and fusion.
Our empirical analysis reveals that the integration approaches exhibit superior performance compared to baselines when applied to smaller molecular graphs.
arXiv Detail & Related papers (2024-05-14T06:09:08Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - In-Context Learning for Few-Shot Molecular Property Prediction [56.67309268480843]
In this paper, we adapt the concepts underpinning in-context learning to develop a new algorithm for few-shot molecular property prediction.
Our approach learns to predict molecular properties from a context of (molecule, property measurement) pairs and rapidly adapts to new properties without fine-tuning.
arXiv Detail & Related papers (2023-10-13T05:12:48Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.