Challenges and Opportunities in Text Generation Explainability
- URL: http://arxiv.org/abs/2405.08468v1
- Date: Tue, 14 May 2024 09:44:52 GMT
- Title: Challenges and Opportunities in Text Generation Explainability
- Authors: Kenza Amara, Rita Sevastjanova, Mennatallah El-Assady,
- Abstract summary: This paper outlines 17 challenges categorized into three groups that arise during the development and assessment of explainability methods.
These challenges encompass issues concerning tokenization, defining explanation similarity, determining token importance and prediction change metrics, the level of human intervention required, and the creation of suitable test datasets.
The paper illustrates how these challenges can be intertwined, showcasing new opportunities for the community.
- Score: 12.089513278445704
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The necessity for interpretability in natural language processing (NLP) has risen alongside the growing prominence of large language models. Among the myriad tasks within NLP, text generation stands out as a primary objective of autoregressive models. The NLP community has begun to take a keen interest in gaining a deeper understanding of text generation, leading to the development of model-agnostic explainable artificial intelligence (xAI) methods tailored to this task. The design and evaluation of explainability methods are non-trivial since they depend on many factors involved in the text generation process, e.g., the autoregressive model and its stochastic nature. This paper outlines 17 challenges categorized into three groups that arise during the development and assessment of attribution-based explainability methods. These challenges encompass issues concerning tokenization, defining explanation similarity, determining token importance and prediction change metrics, the level of human intervention required, and the creation of suitable test datasets. The paper illustrates how these challenges can be intertwined, showcasing new opportunities for the community. These include developing probabilistic word-level explainability methods and engaging humans in the explainability pipeline, from the data design to the final evaluation, to draw robust conclusions on xAI methods.
Related papers
- From Feature Importance to Natural Language Explanations Using LLMs with RAG [4.204990010424084]
We introduce traceable question-answering, leveraging an external knowledge repository to inform responses of Large Language Models (LLMs)
This knowledge repository comprises contextual details regarding the model's output, containing high-level features, feature importance, and alternative probabilities.
We integrate four key characteristics - social, causal, selective, and contrastive - drawn from social science research on human explanations into a single-shot prompt, guiding the response generation process.
arXiv Detail & Related papers (2024-07-30T17:27:20Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - An Inclusive Notion of Text [69.36678873492373]
We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP.
We introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling.
arXiv Detail & Related papers (2022-11-10T14:26:43Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
We apply a statistical tool, model criticism in latent space, to evaluate the high-level structure of generated text.
We perform experiments on three representative aspects of high-level discourse -- coherence, coreference, and topicality.
We find that transformer-based language models are able to capture topical structures but have a harder time maintaining structural coherence or modeling coreference.
arXiv Detail & Related papers (2022-10-16T04:35:58Z) - On the Explainability of Natural Language Processing Deep Models [3.0052400859458586]
Methods have been developed to address the challenges and present satisfactory explanations on Natural Language Processing (NLP) models.
Motivated to democratize ExAI methods in the NLP field, we present in this work a survey that studies model-agnostic as well as model-specific explainability methods on NLP models.
arXiv Detail & Related papers (2022-10-13T11:59:39Z) - Faithfulness in Natural Language Generation: A Systematic Survey of
Analysis, Evaluation and Optimization Methods [48.47413103662829]
Natural Language Generation (NLG) has made great progress in recent years due to the development of deep learning techniques such as pre-trained language models.
However, the faithfulness problem that the generated text usually contains unfaithful or non-factual information has become the biggest challenge.
arXiv Detail & Related papers (2022-03-10T08:28:32Z) - Artificial Text Detection via Examining the Topology of Attention Maps [58.46367297712477]
We propose three novel types of interpretable topological features for this task based on Topological Data Analysis (TDA)
We empirically show that the features derived from the BERT model outperform count- and neural-based baselines up to 10% on three common datasets.
The probing analysis of the features reveals their sensitivity to the surface and syntactic properties.
arXiv Detail & Related papers (2021-09-10T12:13:45Z) - Evaluating Factuality in Generation with Dependency-level Entailment [57.5316011554622]
We propose a new formulation of entailment that decomposes it at the level of dependency arcs.
We show that our dependency arc entailment model trained on this data can identify factual inconsistencies in paraphrasing and summarization better than sentence-level methods.
arXiv Detail & Related papers (2020-10-12T06:43:10Z) - Neural Language Generation: Formulation, Methods, and Evaluation [13.62873478165553]
Recent advances in neural network-based generative modeling have reignited the hopes in having computer systems capable of seamlessly conversing with humans.
High capacity deep learning models trained on large scale datasets demonstrate unparalleled abilities to learn patterns in the data even in the lack of explicit supervision signals.
There is no standard way to assess the quality of text produced by these generative models, which constitutes a serious bottleneck towards the progress of the field.
arXiv Detail & Related papers (2020-07-31T00:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.