Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks
- URL: http://arxiv.org/abs/2405.08473v1
- Date: Tue, 14 May 2024 09:55:03 GMT
- Title: Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks
- Authors: Hyeju Shin, Ibrahim Aliyu, Abubakar Isah, Jinsul Kim,
- Abstract summary: Digital Twin Networks (DTN) technology is expected to become the foundation technology for autonomous networks.
DTN has the advantage of being able to operate and system networks based on real-time collected data in a closed-loop system.
Various AI research and standardization work is ongoing to optimize the use of DTN.
- Score: 0.2499907423888049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the emergence and proliferation of new forms of large-scale services such as smart homes, virtual reality/augmented reality, the increasingly complex networks are raising concerns about significant operational costs. As a result, the need for network management automation is emphasized, and Digital Twin Networks (DTN) technology is expected to become the foundation technology for autonomous networks. DTN has the advantage of being able to operate and system networks based on real-time collected data in a closed-loop system, and currently it is mainly designed for optimization scenarios. To improve network performance in optimization scenarios, it is necessary to select appropriate configurations and perform accurate performance evaluation based on real data. However, most network evaluation models currently use simulation data. Meanwhile, according to DTN standards documents, artificial intelligence (AI) models can ensure scalability, real-time performance, and accuracy in large-scale networks. Various AI research and standardization work is ongoing to optimize the use of DTN. When designing AI models, it is crucial to consider the characteristics of the data. This paper presents an autoencoder-based skip connected message passing neural network (AE-SMPN) as a network evaluation model using real network data. The model is created by utilizing graph neural network (GNN) with recurrent neural network (RNN) models to capture the spatiotemporal features of network data. Additionally, an AutoEncoder (AE) is employed to extract initial features. The neural network was trained using the real DTN dataset provided by the Barcelona Neural Networking Center (BNN-UPC), and the paper presents the analysis of the model structure along with experimental results.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Self-Organizing Recurrent Stochastic Configuration Networks for Nonstationary Data Modelling [3.8719670789415925]
Recurrent configuration networks (RSCNs) are a class of randomized models that have shown promise in modelling nonlinear dynamics.
This paper aims at developing a self-organizing version of RSCNs, termed as SORSCNs, to enhance the continuous learning ability of the network for modelling nonstationary data.
arXiv Detail & Related papers (2024-10-14T01:28:25Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - SynA-ResNet: Spike-driven ResNet Achieved through OR Residual Connection [10.702093960098104]
Spiking Neural Networks (SNNs) have garnered substantial attention in brain-like computing for their biological fidelity and the capacity to execute energy-efficient spike-driven operations.
We propose a novel training paradigm that first accumulates a large amount of redundant information through OR Residual Connection (ORRC)
We then filters out the redundant information using the Synergistic Attention (SynA) module, which promotes feature extraction in the backbone while suppressing the influence of noise and useless features in the shortcuts.
arXiv Detail & Related papers (2023-11-11T13:36:27Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Graph Neural Networks for Leveraging Industrial Equipment Structure: An
application to Remaining Useful Life Estimation [21.297461316329453]
We propose to capture the structure of a complex equipment in the form of a graph, and use graph neural networks (GNNs) to model multi-sensor time-series data.
We observe that the proposed GNN-based RUL estimation model compares favorably to several strong baselines from literature such as those based on RNNs and CNNs.
arXiv Detail & Related papers (2020-06-30T06:38:08Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z) - 1D CNN Based Network Intrusion Detection with Normalization on
Imbalanced Data [0.19336815376402716]
Intrusion detection system (IDS) plays an essential role in computer networks protecting computing resources and data from outside attacks.
Recent IDS faces challenges improving flexibility and efficiency of the IDS for unexpected and unpredictable attacks.
We propose a deep learning approach for developing the efficient and flexible IDS using one-dimensional Convolutional Neural Network (1D-CNN)
arXiv Detail & Related papers (2020-03-01T12:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.