Growing Artificial Neural Networks for Control: the Role of Neuronal Diversity
- URL: http://arxiv.org/abs/2405.08510v1
- Date: Tue, 14 May 2024 11:21:52 GMT
- Title: Growing Artificial Neural Networks for Control: the Role of Neuronal Diversity
- Authors: Eleni Nisioti, Erwan Plantec, Milton Montero, Joachim Winther Pedersen, Sebastian Risi,
- Abstract summary: In biological evolution complex neural structures grow from a handful of cellular ingredients.
This self-organisation is hypothesized to play an important part in the generalisation, and robustness of biological neural networks.
We present an algorithm for growing artificial neural networks that solve reinforcement learning tasks.
- Score: 7.479827648985631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In biological evolution complex neural structures grow from a handful of cellular ingredients. As genomes in nature are bounded in size, this complexity is achieved by a growth process where cells communicate locally to decide whether to differentiate, proliferate and connect with other cells. This self-organisation is hypothesized to play an important part in the generalisation, and robustness of biological neural networks. Artificial neural networks (ANNs), on the other hand, are traditionally optimized in the space of weights. Thus, the benefits and challenges of growing artificial neural networks remain understudied. Building on the previously introduced Neural Developmental Programs (NDP), in this work we present an algorithm for growing ANNs that solve reinforcement learning tasks. We identify a key challenge: ensuring phenotypic complexity requires maintaining neuronal diversity, but this diversity comes at the cost of optimization stability. To address this, we introduce two mechanisms: (a) equipping neurons with an intrinsic state inherited upon neurogenesis; (b) lateral inhibition, a mechanism inspired by biological growth, which controlls the pace of growth, helping diversity persist. We show that both mechanisms contribute to neuronal diversity and that, equipped with them, NDPs achieve comparable results to existing direct and developmental encodings in complex locomotion tasks
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Synergistic pathways of modulation enable robust task packing within neural dynamics [0.0]
We use recurrent network models to probe the distinctions between two forms of contextual modulation of neural dynamics.
We demonstrate distinction between these mechanisms at the level of the neuronal dynamics they induce.
These characterizations indicate complementarity and synergy in how these mechanisms act, potentially over multiple time-scales.
arXiv Detail & Related papers (2024-08-02T15:12:01Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs [10.524752369156339]
Biological nervous systems are created in a fundamentally different way than current artificial neural networks.
By contrast, biological nervous systems are grown through a dynamic self-organizing process.
arXiv Detail & Related papers (2023-07-17T01:58:52Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Dive into the Power of Neuronal Heterogeneity [8.6837371869842]
We show the challenges faced by backpropagation-based methods in optimizing Spiking Neural Networks (SNNs) and achieve more robust optimization of heterogeneous neurons in random networks using an Evolutionary Strategy (ES)
We find that membrane time constants play a crucial role in neural heterogeneity, and their distribution is similar to that observed in biological experiments.
arXiv Detail & Related papers (2023-05-19T07:32:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.