Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs
- URL: http://arxiv.org/abs/2307.08197v1
- Date: Mon, 17 Jul 2023 01:58:52 GMT
- Title: Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs
- Authors: Elias Najarro, Shyam Sudhakaran, Sebastian Risi
- Abstract summary: Biological nervous systems are created in a fundamentally different way than current artificial neural networks.
By contrast, biological nervous systems are grown through a dynamic self-organizing process.
- Score: 10.524752369156339
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biological nervous systems are created in a fundamentally different way than
current artificial neural networks. Despite its impressive results in a variety
of different domains, deep learning often requires considerable engineering
effort to design high-performing neural architectures. By contrast, biological
nervous systems are grown through a dynamic self-organizing process. In this
paper, we take initial steps toward neural networks that grow through a
developmental process that mirrors key properties of embryonic development in
biological organisms. The growth process is guided by another neural network,
which we call a Neural Developmental Program (NDP) and which operates through
local communication alone. We investigate the role of neural growth on
different machine learning benchmarks and different optimization methods
(evolutionary training, online RL, offline RL, and supervised learning).
Additionally, we highlight future research directions and opportunities enabled
by having self-organization driving the growth of neural networks.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
We review current brain-inspired learning representations in artificial neural networks.
We investigate the integration of more biologically plausible mechanisms, such as synaptic plasticity, to enhance these networks' capabilities.
arXiv Detail & Related papers (2023-05-18T18:34:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - HyperNCA: Growing Developmental Networks with Neural Cellular Automata [10.798252487541694]
We propose a new hypernetwork approach to grow artificial neural networks based on neural cellular automata.
Inspired by self-organising systems and information-theoretic approaches to developmental biology, we show that our HyperNCA method can grow neural networks capable of solving common reinforcement learning tasks.
arXiv Detail & Related papers (2022-04-25T14:08:50Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
A kind of spiking neural network with biological interpretability is gradually receiving wide attention.
This review hopes to attract different researchers and advance the development of brain-inspired intelligence and artificial intelligence.
arXiv Detail & Related papers (2022-04-09T09:34:34Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.