Dynamic Feature Learning and Matching for Class-Incremental Learning
- URL: http://arxiv.org/abs/2405.08533v1
- Date: Tue, 14 May 2024 12:17:19 GMT
- Title: Dynamic Feature Learning and Matching for Class-Incremental Learning
- Authors: Sunyuan Qiang, Yanyan Liang, Jun Wan, Du Zhang,
- Abstract summary: Class-incremental learning (CIL) has emerged as a means to learn new classes without catastrophic forgetting of previous classes.
We propose the Dynamic Feature Learning and Matching (DFLM) model in this paper.
Our proposed model achieves significant performance improvements over existing methods.
- Score: 20.432575325147894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class-incremental learning (CIL) has emerged as a means to learn new classes incrementally without catastrophic forgetting of previous classes. Recently, CIL has undergone a paradigm shift towards dynamic architectures due to their superior performance. However, these models are still limited by the following aspects: (i) Data augmentation (DA), which are tightly coupled with CIL, remains under-explored in dynamic architecture scenarios. (ii) Feature representation. The discriminativeness of dynamic feature are sub-optimal and possess potential for refinement. (iii) Classifier. The misalignment between dynamic feature and classifier constrains the capabilities of the model. To tackle the aforementioned drawbacks, we propose the Dynamic Feature Learning and Matching (DFLM) model in this paper from above three perspectives. Specifically, we firstly introduce class weight information and non-stationary functions to extend the mix DA method for dynamically adjusting the focus on memory during training. Then, von Mises-Fisher (vMF) classifier is employed to effectively model the dynamic feature distribution and implicitly learn their discriminative properties. Finally, the matching loss is proposed to facilitate the alignment between the learned dynamic features and the classifier by minimizing the distribution distance. Extensive experiments on CIL benchmarks validate that our proposed model achieves significant performance improvements over existing methods.
Related papers
- SOLD: Reinforcement Learning with Slot Object-Centric Latent Dynamics [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamics is a novel algorithm that learns object-centric dynamics models from pixel inputs.
We demonstrate that the structured latent space not only improves model interpretability but also provides a valuable input space for behavior models to reason over.
Our results show that SOLD outperforms DreamerV3, a state-of-the-art model-based RL algorithm, across a range of benchmark robotic environments.
arXiv Detail & Related papers (2024-10-11T14:03:31Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
We propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL.
We train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces.
Our prototype complement strategy synthesizes old classes' new features without using any old class instance.
arXiv Detail & Related papers (2024-03-18T17:58:13Z) - Continual Learning with Optimal Transport based Mixture Model [17.398605698033656]
We propose an online mixture model learning approach based on nice properties of the mature optimal transport theory (OT-MM)
Our proposed method can significantly outperform the current state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-30T06:40:29Z) - Incremental Few-Shot Semantic Segmentation via Embedding Adaptive-Update
and Hyper-class Representation [30.558312809285905]
EHNet achieves new state-of-the-art performance with remarkable advantages.
Experiments on PASCAL-5i and COCO datasets show that EHNet achieves new state-of-the-art performance with remarkable advantages.
arXiv Detail & Related papers (2022-07-26T15:20:07Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Self-Promoted Prototype Refinement for Few-Shot Class-Incremental
Learning [81.10531943939365]
Few-shot class-incremental learning is to recognize the new classes given few samples and not forget the old classes.
We propose a novel incremental prototype learning scheme that adapts the feature representation to various generated incremental episodes.
Experiments on three benchmark datasets demonstrate the above-par incremental performance, outperforming state-of-the-art methods by a margin of 13%, 17% and 11%, respectively.
arXiv Detail & Related papers (2021-07-19T14:31:33Z) - Dynamic Memory Induction Networks for Few-Shot Text Classification [84.88381813651971]
This paper proposes Dynamic Memory Induction Networks (DMIN) for few-shot text classification.
The proposed model achieves new state-of-the-art results on the miniRCV1 and ODIC dataset, improving the best performance (accuracy) by 24%.
arXiv Detail & Related papers (2020-05-12T12:41:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.