Order-Robust Class Incremental Learning: Graph-Driven Dynamic Similarity Grouping
- URL: http://arxiv.org/abs/2502.20032v2
- Date: Tue, 18 Mar 2025 03:10:01 GMT
- Title: Order-Robust Class Incremental Learning: Graph-Driven Dynamic Similarity Grouping
- Authors: Guannan Lai, Yujie Li, Xiangkun Wang, Junbo Zhang, Tianrui Li, Xin Yang,
- Abstract summary: Class Incremental Learning (CIL) aims to enable models to learn new classes sequentially while retaining knowledge of previous ones.<n>Recent studies highlight that the performance of CIL models is highly sensitive to the order of class arrival.<n>We propose Graph-Driven Dynamic Similarity Grouping (GDDSG), a novel method that employs graph coloring algorithms to dynamically partition classes into similarity-constrained groups.
- Score: 19.168022702075774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class Incremental Learning (CIL) aims to enable models to learn new classes sequentially while retaining knowledge of previous ones. Although current methods have alleviated catastrophic forgetting (CF), recent studies highlight that the performance of CIL models is highly sensitive to the order of class arrival, particularly when sequentially introduced classes exhibit high inter-class similarity. To address this critical yet understudied challenge of class order sensitivity, we first extend existing CIL frameworks through theoretical analysis, proving that grouping classes with lower pairwise similarity during incremental phases significantly improves model robustness to order variations. Building on this insight, we propose Graph-Driven Dynamic Similarity Grouping (GDDSG), a novel method that employs graph coloring algorithms to dynamically partition classes into similarity-constrained groups. Each group trains an isolated CIL sub-model and constructs meta-features for class group identification. Experimental results demonstrate that our method effectively addresses the issue of class order sensitivity while achieving optimal performance in both model accuracy and anti-forgetting capability. Our code is available at https://github.com/AIGNLAI/GDDSG.
Related papers
- Strategic Base Representation Learning via Feature Augmentations for Few-Shot Class Incremental Learning [1.5269945475810085]
Few-shot class incremental learning implies the model to learn new classes while retaining knowledge of previously learned classes with a small number of training instances.
Existing frameworks typically freeze the parameters of the previously learned classes during the incorporation of new classes.
We propose a novel feature augmentation driven contrastive learning framework designed to enhance the separation of previously learned classes to accommodate new classes.
arXiv Detail & Related papers (2025-01-16T08:17:32Z) - Revitalizing Reconstruction Models for Multi-class Anomaly Detection via Class-Aware Contrastive Learning [19.114941437668705]
We propose a plug-and-play modification by incorporating class-aware contrastive learning (CL)
Experiments across four datasets verify the effectiveness of our approach, yielding significant improvements and superior performance compared to advanced methods.
arXiv Detail & Related papers (2024-12-06T04:31:09Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Dynamic Feature Learning and Matching for Class-Incremental Learning [20.432575325147894]
Class-incremental learning (CIL) has emerged as a means to learn new classes without catastrophic forgetting of previous classes.
We propose the Dynamic Feature Learning and Matching (DFLM) model in this paper.
Our proposed model achieves significant performance improvements over existing methods.
arXiv Detail & Related papers (2024-05-14T12:17:19Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Learning from Mistakes: Self-Regularizing Hierarchical Representations
in Point Cloud Semantic Segmentation [15.353256018248103]
LiDAR semantic segmentation has gained attention to accomplish fine-grained scene understanding.
We present a coarse-to-fine setup that LEArns from classification mistaKes (LEAK) derived from a standard model.
Our LEAK approach is very general and can be seamlessly applied on top of any segmentation architecture.
arXiv Detail & Related papers (2023-01-26T14:52:30Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning [141.35105358670316]
We study the difference between a na"ively-trained initial-phase model and the oracle model.
We propose Class-wise Decorrelation (CwD) that effectively regularizes representations of each class to scatter more uniformly.
Our CwD is simple to implement and easy to plug into existing methods.
arXiv Detail & Related papers (2021-12-09T07:20:32Z) - APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic
Segmentation [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a given query image with only a few labeled support images.
Most advanced solutions exploit a metric learning framework that performs segmentation through matching each query feature to a learned class-specific prototype.
We present an adaptive prototype representation by introducing class-specific and class-agnostic prototypes.
arXiv Detail & Related papers (2021-11-24T04:38:37Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Model Patching: Closing the Subgroup Performance Gap with Data
Augmentation [50.35010342284508]
We introduce model patching, a framework for improving robustness of machine learning models.
Model patching encourages the model to be invariant to subgroup differences, and focus on class information shared by subgroups.
We instantiate model patching with CAMEL, which (1) uses a CycleGAN to learn the intra-class, inter-subgroup augmentations, and (2) balances subgroup performance using a theoretically-motivated consistency regularizer.
We demonstrate CAMEL's effectiveness on 3 benchmark datasets, with reductions in robust error up to 33% relative to the best baseline.
arXiv Detail & Related papers (2020-08-15T20:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.