Diff-Lung: Diffusion-Based Texture Synthesis for Enhanced Pathological Tissue Segmentation in Lung CT Scans
- URL: http://arxiv.org/abs/2501.02867v2
- Date: Tue, 07 Jan 2025 13:13:17 GMT
- Title: Diff-Lung: Diffusion-Based Texture Synthesis for Enhanced Pathological Tissue Segmentation in Lung CT Scans
- Authors: Rezkellah Noureddine Khiati, Pierre-Yves Brillet, Radu Ispas, Catalin Fetita,
- Abstract summary: segmentation is challenging due to the significant class imbalance between healthy and pathological tissues.
This paper addresses this issue by leveraging a diffusion model for data augmentation applied during training an AI model.
Our approach generates synthetic pathological tissue patches while preserving essential shape characteristics and intricate details specific to each tissue type.
- Score: 0.0
- License:
- Abstract: Accurate quantification of the extent of lung pathological patterns (fibrosis, ground-glass opacity, emphysema, consolidation) is prerequisite for diagnosis and follow-up of interstitial lung diseases. However, segmentation is challenging due to the significant class imbalance between healthy and pathological tissues. This paper addresses this issue by leveraging a diffusion model for data augmentation applied during training an AI model. Our approach generates synthetic pathological tissue patches while preserving essential shape characteristics and intricate details specific to each tissue type. This method enhances the segmentation process by increasing the occurence of underrepresented classes in the training data. We demonstrate that our diffusion-based augmentation technique improves segmentation accuracy across all pathological tissue types, particularly for the less common patterns. This advancement contributes to more reliable automated analysis of lung CT scans, potentially improving clinical decision-making and patient outcomes
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - CIResDiff: A Clinically-Informed Residual Diffusion Model for Predicting Idiopathic Pulmonary Fibrosis Progression [38.14873567230233]
Idiopathic Pulmonary Fibrosis (IPF) significantly correlates with higher patient mortality rates.
Current clinical criteria define disease progression requiring two CT scans with a one-year interval.
We develop a novel diffusion model to accurately predict the progression of IPF by generating patient's follow-up CT scan.
arXiv Detail & Related papers (2024-08-01T22:01:42Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Shape-aware synthesis of pathological lung CT scans using CycleGAN for enhanced semi-supervised lung segmentation [0.0]
This paper emphasizes the use of CycleGAN for unpaired image-to-image translation.
It provides an augmentation method able to generate fake pathological images matching an existing ground truth.
Preliminary results from this research demonstrate significant qualitative and quantitative improvements.
arXiv Detail & Related papers (2024-05-14T12:45:49Z) - Adversarial Transformer for Repairing Human Airway Segmentation [7.176060570019899]
This paper presents a patch-scale adversarial-based refinement network that takes in preliminary segmentation along with original CT images and outputs a refined mask of the airway structure.
The results are quantitatively evaluated by seven metrics and achieved more than a 15% rise in detected length ratio and detected branch ratio.
arXiv Detail & Related papers (2022-10-21T15:20:08Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.