Intelligent Control in 6G Open RAN: Security Risk or Opportunity?
- URL: http://arxiv.org/abs/2405.08577v1
- Date: Tue, 14 May 2024 13:18:28 GMT
- Title: Intelligent Control in 6G Open RAN: Security Risk or Opportunity?
- Authors: Sanaz Soltani, Mohammad Shojafar, Ali Amanlou, Rahim Tafazolli,
- Abstract summary: The Open Radio Access Network (Open RAN) framework, emerging as the cornerstone for Artificial Intelligence (AI)-enabled 6G mobile networks, heralds a transformative shift in radio access network architecture.
The RAN Intelligent Controller (RIC) plays a central role in Open RAN by improving network efficiency and flexibility.
This survey combines a comprehensive analysis of RAN security, tracing its evolution from 2G to 5G, with an in-depth exploration of RIC security.
- Score: 16.153508949084614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Open Radio Access Network (Open RAN) framework, emerging as the cornerstone for Artificial Intelligence (AI)-enabled Sixth-Generation (6G) mobile networks, heralds a transformative shift in radio access network architecture. As the adoption of Open RAN accelerates, ensuring its security becomes critical. The RAN Intelligent Controller (RIC) plays a central role in Open RAN by improving network efficiency and flexibility. Nevertheless, it also brings about potential security risks that need careful scrutiny. Therefore, it is imperative to evaluate the current state of RIC security comprehensively. This assessment is essential to gain a profound understanding of the security considerations associated with RIC. This survey combines a comprehensive analysis of RAN security, tracing its evolution from 2G to 5G, with an in-depth exploration of RIC security, marking the first comprehensive examination of its kind in the literature. Real-world security incidents involving RIC are vividly illustrated, providing practical insights. The study evaluates the security implications of the RIC within the 6G Open RAN context, addressing security vulnerabilities, mitigation strategies, and potential enhancements. It aims to guide stakeholders in the telecom industry toward a secure and dependable telecommunications infrastructure. The article serves as a valuable reference, shedding light on the RIC's crucial role within the broader network infrastructure and emphasizing security's paramount importance. This survey also explores the promising security opportunities that the RIC presents for enhancing network security and resilience in the context of 6G mobile networks. It outlines open issues, lessons learned, and future research directions in the domain of intelligent control in 6G open RAN, facilitating a comprehensive understanding of this dynamic landscape.
Related papers
- From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
The vision for 6G aims to enhance network capabilities with faster data rates, near-zero latency, and higher capacity.
This advancement seeks to enable immersive mixed-reality experiences, holographic communications, and smart city infrastructures.
The expansion of 6G raises critical security and privacy concerns, such as unauthorized access and data breaches.
arXiv Detail & Related papers (2024-10-04T03:03:44Z) - Security, Trust and Privacy challenges in AI-driven 6G Networks [2.362412515574206]
This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure.
It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats.
The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network.
arXiv Detail & Related papers (2024-09-16T14:48:20Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
We investigate the security implications of and software-based Open Radio Access Network (RAN) systems.
We highlight the presence of potential vulnerabilities and misconfigurations in the infrastructure supporting the Near Real-Time RAN Controller (RIC) cluster.
arXiv Detail & Related papers (2024-05-03T07:18:45Z) - ZTRAN: Prototyping Zero Trust Security xApps for Open Radio Access Network Deployments [2.943640991628177]
Open radio access network (O-RAN) offers new degrees of freedom for building and operating advanced cellular networks.
This paper proposes leveraging zero trust principles for O-RAN security.
We introduce zero trust RAN (ZTRAN), which embeds service authentication, intrusion detection, and secure slicing subsystems that are encapsulated as xApps.
arXiv Detail & Related papers (2024-03-06T23:57:16Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - Implementing and Evaluating Security in O-RAN: Interfaces, Intelligence, and Platforms [18.106587432715155]
The Open Radio Access Network (RAN) builds on top of cloud-based, multi-vendor, open and intelligent architectures to shape the next generation of cellular networks for 5G and beyond.
This article is the first work in approaching the security aspect of O-RAN holistically and with experimental evidence obtained on a state-of-the-art programmable O-RAN platform.
arXiv Detail & Related papers (2023-04-21T17:02:35Z) - Foveate, Attribute, and Rationalize: Towards Physically Safe and
Trustworthy AI [76.28956947107372]
Covertly unsafe text is an area of particular interest, as such text may arise from everyday scenarios and are challenging to detect as harmful.
We propose FARM, a novel framework leveraging external knowledge for trustworthy rationale generation in the context of safety.
Our experiments show that FARM obtains state-of-the-art results on the SafeText dataset, showing absolute improvement in safety classification accuracy by 5.9%.
arXiv Detail & Related papers (2022-12-19T17:51:47Z) - Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G
O-RAN [1.7811776494967646]
This paper examines the security implications of AI-driven 6G radio access networks (RANs)
The Open RAN (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with AI control.
arXiv Detail & Related papers (2021-06-01T16:36:37Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.