Towards Secure Intelligent O-RAN Architecture: Vulnerabilities, Threats and Promising Technical Solutions using LLMs
- URL: http://arxiv.org/abs/2411.08640v1
- Date: Wed, 13 Nov 2024 14:31:52 GMT
- Title: Towards Secure Intelligent O-RAN Architecture: Vulnerabilities, Threats and Promising Technical Solutions using LLMs
- Authors: Mojdeh Karbalaee Motalleb, Chafika Benzaid, Tarik Taleb, Marcos Katz, Vahid Shah-Mansouri, JaeSeung Song,
- Abstract summary: Open radio access network (O-RAN) is a new concept defining an intelligent architecture with enhanced flexibility, openness, and the ability to slice services more efficiently.
In this paper, we present an in-depth security analysis of the O-RAN architecture.
We discuss the potential threats that may arise in the different O-RAN architecture layers and their impact on the Confidentiality, Integrity, and Availability (CIA) triad.
- Score: 12.016792293867278
- License:
- Abstract: The evolution of wireless communication systems will be fundamentally impacted by an open radio access network (O-RAN), a new concept defining an intelligent architecture with enhanced flexibility, openness, and the ability to slice services more efficiently. For all its promises, and like any technological advancement, O-RAN is not without risks that need to be carefully assessed and properly addressed to accelerate its wide adoption in future mobile networks. In this paper, we present an in-depth security analysis of the O-RAN architecture, discussing the potential threats that may arise in the different O-RAN architecture layers and their impact on the Confidentiality, Integrity, and Availability (CIA) triad. We also promote the potential of zero trust, Moving Target Defense (MTD), blockchain, and large language models(LLM) technologies in fortifying O-RAN's security posture. Furthermore, we numerically demonstrate the effectiveness of MTD in empowering robust deep reinforcement learning methods for dynamic network slice admission control in the O-RAN architecture. Moreover, we examine the effect of explainable AI (XAI) based on LLMs in securing the system.
Related papers
- An Intelligent Native Network Slicing Security Architecture Empowered by Federated Learning [0.0]
We propose an architecture-intelligent security mechanism to improve the Network Slicing solutions.
We identify Distributed Denial-of-Service (DDoS) and intrusion attacks within the slice using generic and non-native telemetry records.
arXiv Detail & Related papers (2024-10-04T21:12:23Z) - Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
generative artificial intelligence (GAI) models have demonstrated superiority over conventional AI methods.
MoE, which uses multiple expert models for prediction through a gate mechanism, proposes possible solutions.
arXiv Detail & Related papers (2024-05-07T11:13:17Z) - Large language models in 6G security: challenges and opportunities [5.073128025996496]
We focus on the security aspects of Large Language Models (LLMs) from the viewpoint of potential adversaries.
This will include the development of a comprehensive threat taxonomy, categorizing various adversary behaviors.
Also, our research will concentrate on how LLMs can be integrated into cybersecurity efforts by defense teams, also known as blue teams.
arXiv Detail & Related papers (2024-03-18T20:39:34Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Cross-Domain AI for Early Attack Detection and Defense Against Malicious Flows in O-RAN [5.196266559887213]
Cross-Domain Artificial Intelligence (AI) can be the key to address this, although its application in Open Radio Access Network (O-RAN) is still at its infancy.
Our results demonstrate the potential of the proposed approach, achieving an accuracy rate of 93%.
This approach not only bridges critical gaps in mobile network security but also showcases the potential of cross-domain AI in enhancing the efficacy of network security measures.
arXiv Detail & Related papers (2024-01-17T13:29:47Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Moving Target Defense based Secured Network Slicing System in the O-RAN Architecture [12.360792257414458]
Artificial intelligence (AI) and machine learning (ML) security threats can even threaten open radio access network (O-RAN) benefits.
This paper proposes a novel approach to estimating the optimal number of predefined VNFs for each slice.
We also address secure AI/ML methods for dynamic service admission control and power minimization in the O-RAN architecture.
arXiv Detail & Related papers (2023-09-23T18:21:33Z) - Implementing and Evaluating Security in O-RAN: Interfaces, Intelligence, and Platforms [18.106587432715155]
The Open Radio Access Network (RAN) builds on top of cloud-based, multi-vendor, open and intelligent architectures to shape the next generation of cellular networks for 5G and beyond.
This article is the first work in approaching the security aspect of O-RAN holistically and with experimental evidence obtained on a state-of-the-art programmable O-RAN platform.
arXiv Detail & Related papers (2023-04-21T17:02:35Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.