Treatment Effect Estimation for User Interest Exploration on Recommender Systems
- URL: http://arxiv.org/abs/2405.08582v1
- Date: Tue, 14 May 2024 13:22:33 GMT
- Title: Treatment Effect Estimation for User Interest Exploration on Recommender Systems
- Authors: Jiaju Chen, Wenjie Wang, Chongming Gao, Peng Wu, Jianxiong Wei, Qingsong Hua,
- Abstract summary: We propose an Uplift model-based Recommender framework, which regards top-N recommendation as a treatment optimization problem.
UpliftRec estimates the treatment effects, i.e., the click-through rate (CTR) under different category exposure ratios, by using observational user feedback.
UpliftRec calculates group-level treatment effects to discover users' hidden interests with high CTR rewards.
- Score: 10.05609996672672
- License:
- Abstract: Recommender systems learn personalized user preferences from user feedback like clicks. However, user feedback is usually biased towards partially observed interests, leaving many users' hidden interests unexplored. Existing approaches typically mitigate the bias, increase recommendation diversity, or use bandit algorithms to balance exploration-exploitation trade-offs. Nevertheless, they fail to consider the potential rewards of recommending different categories of items and lack the global scheduling of allocating top-N recommendations to categories, leading to suboptimal exploration. In this work, we propose an Uplift model-based Recommender (UpliftRec) framework, which regards top-N recommendation as a treatment optimization problem. UpliftRec estimates the treatment effects, i.e., the click-through rate (CTR) under different category exposure ratios, by using observational user feedback. UpliftRec calculates group-level treatment effects to discover users' hidden interests with high CTR rewards and leverages inverse propensity weighting to alleviate confounder bias. Thereafter, UpliftRec adopts a dynamic programming method to calculate the optimal treatment for overall CTR maximization. We implement UpliftRec on different backend models and conduct extensive experiments on three datasets. The empirical results validate the effectiveness of UpliftRec in discovering users' hidden interests while achieving superior recommendation accuracy.
Related papers
- Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
A small set of popular items dominate the recommendation results due to their high interaction rates.
This phenomenon disproportionately benefits users with mainstream tastes while neglecting those with niche interests.
We propose an in-processing approach to address this issue by intervening in the training process of recommendation models.
arXiv Detail & Related papers (2024-10-07T08:34:18Z) - Negative Sampling in Recommendation: A Survey and Future Directions [43.11318243903388]
Negative sampling is proficients in revealing the genuine negative aspect inherent in user behaviors.
We conduct an extensive literature review on the existing negative sampling strategies in recommendation.
We detail the insights of the tailored negative sampling strategies in diverse recommendation scenarios.
arXiv Detail & Related papers (2024-09-11T12:48:52Z) - Harm Mitigation in Recommender Systems under User Preference Dynamics [16.213153879446796]
We consider a recommender system that takes into account the interplay between recommendations, user interests, and harmful content.
We seek recommendation policies that establish a tradeoff between maximizing click-through rate (CTR) and mitigating harm.
arXiv Detail & Related papers (2024-06-14T09:52:47Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - Correcting the User Feedback-Loop Bias for Recommendation Systems [34.44834423714441]
We propose a systematic and dynamic way to correct user feedback-loop bias in recommendation systems.
Our method includes a deep-learning component to learn each user's dynamic rating history embedding.
We empirically validated the existence of such user feedback-loop bias in real world recommendation systems.
arXiv Detail & Related papers (2021-09-13T15:02:55Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.