Drift Detection: Introducing Gaussian Split Detector
- URL: http://arxiv.org/abs/2405.08637v1
- Date: Tue, 14 May 2024 14:15:31 GMT
- Title: Drift Detection: Introducing Gaussian Split Detector
- Authors: Maxime Fuccellaro, Laurent Simon, Akka Zemmari,
- Abstract summary: We introduce Gaussian Split Detector (GSD) a novel drift detector that works in batch mode.
GSD is designed to work when the data follow a normal distribution and makes use of Gaussian mixture models to monitor changes in the decision boundary.
We show that our detector outperforms the state of the art in detecting real drift and in ignoring virtual drift which is key to avoid false alarms.
- Score: 1.9430846345184412
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent research yielded a wide array of drift detectors. However, in order to achieve remarkable performance, the true class labels must be available during the drift detection phase. This paper targets at detecting drift when the ground truth is unknown during the detection phase. To that end, we introduce Gaussian Split Detector (GSD) a novel drift detector that works in batch mode. GSD is designed to work when the data follow a normal distribution and makes use of Gaussian mixture models to monitor changes in the decision boundary. The algorithm is designed to handle multi-dimension data streams and to work without the ground truth labels during the inference phase making it pertinent for real world use. In an extensive experimental study on real and synthetic datasets, we evaluate our detector against the state of the art. We show that our detector outperforms the state of the art in detecting real drift and in ignoring virtual drift which is key to avoid false alarms.
Related papers
- A Synthetic Benchmark to Explore Limitations of Localized Drift Detections [13.916984628784766]
Concept drift is a common phenomenon in data streams where the statistical properties of the target variable change over time.
This paper explores the concept of localized drift and evaluates the performance of several drift detection techniques in identifying such localized changes.
arXiv Detail & Related papers (2024-08-26T23:24:31Z) - Unsupervised Concept Drift Detection from Deep Learning Representations in Real-time [5.999777817331315]
Concept Drift is a phenomenon in which the underlying data distribution and statistical properties of a target domain change over time.
We propose DriftLens, an unsupervised real-time concept drift detection framework.
It works on unstructured data by exploiting the distribution distances of deep learning representations.
arXiv Detail & Related papers (2024-06-24T23:41:46Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream [3.0885191226198785]
Concept drift detection has attracted considerable attention due to its importance in many real-world applications such as health monitoring and fault diagnosis.
We propose a new approach to detect real-drift in the chunk data stream with limited annotations based on concept confusion.
arXiv Detail & Related papers (2023-03-25T08:59:27Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Task-Sensitive Concept Drift Detector with Metric Learning [7.706795195017394]
We propose a novel task-sensitive drift detection framework, which is able to detect drifts without access to true labels during inference.
It is able to detect real drift, where the drift affects the classification performance, while it properly ignores virtual drift.
We evaluate the performance of the proposed framework with a novel metric, which accumulates the standard metrics of detection accuracy, false positive rate and detection delay into one value.
arXiv Detail & Related papers (2021-08-16T09:10:52Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
We present EHSOD, an end-to-end hybrid-supervised object detection system.
It can be trained in one shot on both fully and weakly-annotated data.
It achieves comparable results on multiple object detection benchmarks with only 30% fully-annotated data.
arXiv Detail & Related papers (2020-02-18T08:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.