A Distributed Approach to Autonomous Intersection Management via Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2405.08655v2
- Date: Tue, 24 Sep 2024 12:04:50 GMT
- Title: A Distributed Approach to Autonomous Intersection Management via Multi-Agent Reinforcement Learning
- Authors: Matteo Cederle, Marco Fabris, Gian Antonio Susto,
- Abstract summary: We show that by leveraging the 3D surround view technology for advanced assistance systems, autonomous vehicles can accurately navigate intersection scenarios without needing any centralised controller.
We validate our approach as an innovative alternative to centralised conventional AIM techniques, ensuring the full efficacy of our results.
- Score: 4.659033572014701
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autonomous intersection management (AIM) poses significant challenges due to the intricate nature of real-world traffic scenarios and the need for a highly expensive centralised server in charge of simultaneously controlling all the vehicles. This study addresses such issues by proposing a novel distributed approach to AIM utilizing multi-agent reinforcement learning (MARL). We show that by leveraging the 3D surround view technology for advanced assistance systems, autonomous vehicles can accurately navigate intersection scenarios without needing any centralised controller. The contributions of this paper thus include a MARL-based algorithm for the autonomous management of a 4-way intersection and also the introduction of a new strategy called prioritised scenario replay for improved training efficacy. We validate our approach as an innovative alternative to conventional centralised AIM techniques, ensuring the full reproducibility of our results. Specifically, experiments conducted in virtual environments using the SMARTS platform highlight its superiority over benchmarks across various metrics.
Related papers
- Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
We propose an asymmetric actor-critic model that learns decentralized cooperative driving policies for autonomous vehicles.
By employing attention neural networks with masking, our approach efficiently manages real-world traffic dynamics and partial observability.
arXiv Detail & Related papers (2024-03-18T16:13:02Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
arXiv Detail & Related papers (2023-09-30T10:54:02Z) - Learning to Control Autonomous Fleets from Observation via Offline
Reinforcement Learning [3.9121134770873733]
We propose to formalize the control of Autonomous Mobility-on-Demand systems through the lens of offline reinforcement learning.
We show that offline RL is a promising paradigm for the application of RL-based solutions within economically-critical systems.
arXiv Detail & Related papers (2023-02-28T18:31:07Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - An Introduction to Multi-Agent Reinforcement Learning and Review of its
Application to Autonomous Mobility [1.496194593196997]
Multi-Agent Reinforcement Learning (MARL) is a research field that aims to find optimal solutions for multiple agents that interact with each other.
This work aims to give an overview of the field to researchers in autonomous mobility.
arXiv Detail & Related papers (2022-03-15T06:40:28Z) - Intelligent Autonomous Intersection Management [1.3534683694551497]
We propose a reinforcement learning based multiagent architecture and a novel RL algorithm coined multi-discount Q-learning.
Our empirical results show that our RL-based multiagent solution can achieve near-optimal performance efficiently.
arXiv Detail & Related papers (2022-02-09T01:45:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.