RALLY: Role-Adaptive LLM-Driven Yoked Navigation for Agentic UAV Swarms
- URL: http://arxiv.org/abs/2507.01378v1
- Date: Wed, 02 Jul 2025 05:44:17 GMT
- Title: RALLY: Role-Adaptive LLM-Driven Yoked Navigation for Agentic UAV Swarms
- Authors: Ziyao Wang, Rongpeng Li, Sizhao Li, Yuming Xiang, Haiping Wang, Zhifeng Zhao, Honggang Zhang,
- Abstract summary: We develop a Role-Adaptive LLM-Driven Yoked navigation algorithm RALLY.<n>RALLY uses structured natural language for efficient semantic communication and collaborative reasoning.<n> Experiments show that RALLY outperforms conventional approaches in terms of task coverage, convergence speed, and generalization.
- Score: 15.891423894740045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent control of Unmanned Aerial Vehicles (UAVs) swarms has emerged as a critical research focus, and it typically requires the swarm to navigate effectively while avoiding obstacles and achieving continuous coverage over multiple mission targets. Although traditional Multi-Agent Reinforcement Learning (MARL) approaches offer dynamic adaptability, they are hindered by the semantic gap in numerical communication and the rigidity of homogeneous role structures, resulting in poor generalization and limited task scalability. Recent advances in Large Language Model (LLM)-based control frameworks demonstrate strong semantic reasoning capabilities by leveraging extensive prior knowledge. However, due to the lack of online learning and over-reliance on static priors, these works often struggle with effective exploration, leading to reduced individual potential and overall system performance. To address these limitations, we propose a Role-Adaptive LLM-Driven Yoked navigation algorithm RALLY. Specifically, we first develop an LLM-driven semantic decision framework that uses structured natural language for efficient semantic communication and collaborative reasoning. Afterward, we introduce a dynamic role-heterogeneity mechanism for adaptive role switching and personalized decision-making. Furthermore, we propose a Role-value Mixing Network (RMIX)-based assignment strategy that integrates LLM offline priors with MARL online policies to enable semi-offline training of role selection strategies. Experiments in the Multi-Agent Particle Environment (MPE) environment and a Software-In-The-Loop (SITL) platform demonstrate that RALLY outperforms conventional approaches in terms of task coverage, convergence speed, and generalization, highlighting its strong potential for collaborative navigation in agentic multi-UAV systems.
Related papers
- Attack the Messages, Not the Agents: A Multi-round Adaptive Stealthy Tampering Framework for LLM-MAS [12.649568006596956]
Large language model-based multi-agent systems (LLM-MAS) effectively accomplish complex and dynamic tasks through inter-agent communication.<n>Existing attack methods targeting LLM-MAS either compromise agent internals or rely on direct and overt persuasion.<n>We propose MAST, a Multi-round Adaptive Stealthy Tampering framework designed to exploit communication vulnerabilities within the system.
arXiv Detail & Related papers (2025-08-05T06:14:53Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
This work focuses on maximizing the secrecy rate in heterogeneous UAV networks (HetUAVNs) under energy constraints.<n>We introduce a Large Language Model (LLM)-guided multi-agent learning approach.<n>Results show that our method outperforms existing baselines in secrecy and energy efficiency.
arXiv Detail & Related papers (2025-07-23T04:22:57Z) - Application of LLM Guided Reinforcement Learning in Formation Control with Collision Avoidance [1.1718316049475228]
Multi-Agent Systems (MAS) excel at accomplishing complex objectives through the collaborative efforts of individual agents.<n>In this paper, we introduce a novel framework that aims to overcome the challenge of designing an effective reward function.<n>By giving large language models (LLMs) on the prioritization of tasks, our framework generates reward functions that can be dynamically adjusted online.
arXiv Detail & Related papers (2025-07-22T09:26:00Z) - Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
We propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), which guides policy updates by estimating relative reward advantages.<n>MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead.<n>We also introduce three group rollout sampling strategies that trade off between efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-03T10:17:19Z) - Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning [69.5875073447454]
This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments.<n>Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning.
arXiv Detail & Related papers (2025-03-10T13:39:09Z) - Position: Towards a Responsible LLM-empowered Multi-Agent Systems [22.905804138387854]
The rise of Agent AI and Large Language Model-powered Multi-Agent Systems (LLM-MAS) has underscored the need for responsible and dependable system operation.<n>These advancements introduce critical challenges: LLM agents exhibit inherent unpredictability, and uncertainties in their outputs can compound, threatening system stability.<n>To address these risks, a human-centered design approach with active dynamic moderation is essential.
arXiv Detail & Related papers (2025-02-03T16:04:30Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - KoMA: Knowledge-driven Multi-agent Framework for Autonomous Driving with Large Language Models [15.951550445568605]
Large language models (LLMs) as autonomous agents offer a novel avenue for tackling real-world challenges through a knowledge-driven manner.
We propose the KoMA framework consisting of multi-agent interaction, multi-step planning, shared-memory, and ranking-based reflection modules.
arXiv Detail & Related papers (2024-07-19T12:13:08Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving [84.31119464141631]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.<n>Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.