EndoDAC: Efficient Adapting Foundation Model for Self-Supervised Depth Estimation from Any Endoscopic Camera
- URL: http://arxiv.org/abs/2405.08672v1
- Date: Tue, 14 May 2024 14:55:15 GMT
- Title: EndoDAC: Efficient Adapting Foundation Model for Self-Supervised Depth Estimation from Any Endoscopic Camera
- Authors: Beilei Cui, Mobarakol Islam, Long Bai, An Wang, Hongliang Ren,
- Abstract summary: We propose Endoscopic Depth Any Camera (EndoDAC) to adapt foundation models to endoscopic scenes.
Specifically, we develop the Dynamic Vector-Based Low-Rank Adaptation (DV-LoRA) and employ Convolutional Neck blocks.
Our framework is capable of being trained solely on monocular surgical videos from any camera, ensuring minimal training costs.
- Score: 12.152362025172915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth estimation plays a crucial role in various tasks within endoscopic surgery, including navigation, surface reconstruction, and augmented reality visualization. Despite the significant achievements of foundation models in vision tasks, including depth estimation, their direct application to the medical domain often results in suboptimal performance. This highlights the need for efficient adaptation methods to adapt these models to endoscopic depth estimation. We propose Endoscopic Depth Any Camera (EndoDAC) which is an efficient self-supervised depth estimation framework that adapts foundation models to endoscopic scenes. Specifically, we develop the Dynamic Vector-Based Low-Rank Adaptation (DV-LoRA) and employ Convolutional Neck blocks to tailor the foundational model to the surgical domain, utilizing remarkably few trainable parameters. Given that camera information is not always accessible, we also introduce a self-supervised adaptation strategy that estimates camera intrinsics using the pose encoder. Our framework is capable of being trained solely on monocular surgical videos from any camera, ensuring minimal training costs. Experiments demonstrate that our approach obtains superior performance even with fewer training epochs and unaware of the ground truth camera intrinsics. Code is available at https://github.com/BeileiCui/EndoDAC.
Related papers
- Surgical Depth Anything: Depth Estimation for Surgical Scenes using Foundation Models [4.740415113160021]
Current state-of-the-art foundational model for depth estimation, Depth Anything, struggles with issues such as blurring, bleeding, and reflections.
This paper presents a fine-tuning of the Depth Anything model specifically for the surgical domain, aiming to deliver more accurate pixel-wise depth maps.
arXiv Detail & Related papers (2024-10-09T21:06:14Z) - Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy [3.1186464715409983]
We introduce a novel fine-tuning strategy for the Depth Anything Model.
We integrate it with an intrinsic-based unsupervised monocular depth estimation framework.
Our results on the SCARED dataset show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-12T03:04:43Z) - Deep intra-operative illumination calibration of hyperspectral cameras [73.08443963791343]
Hyperspectral imaging (HSI) is emerging as a promising novel imaging modality with various potential surgical applications.
We show that dynamically changing lighting conditions in the operating room dramatically affect the performance of HSI applications.
We propose a novel learning-based approach to automatically recalibrating hyperspectral images during surgery.
arXiv Detail & Related papers (2024-09-11T08:30:03Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - Surgical-DINO: Adapter Learning of Foundation Models for Depth
Estimation in Endoscopic Surgery [12.92291406687467]
We design a foundation model-based depth estimation method, referred to as Surgical-DINO, a low-rank adaptation of the DINOv2 for depth estimation in endoscopic surgery.
We build LoRA layers and integrate them into DINO to adapt with surgery-specific domain knowledge instead of conventional fine-tuning.
Our model is extensively validated on a MICCAI challenge dataset of SCARED, which is collected from da Vinci Xi endoscope surgery.
arXiv Detail & Related papers (2024-01-11T16:22:42Z) - RIDE: Self-Supervised Learning of Rotation-Equivariant Keypoint
Detection and Invariant Description for Endoscopy [83.4885991036141]
RIDE is a learning-based method for rotation-equivariant detection and invariant description.
It is trained in a self-supervised manner on a large curation of endoscopic images.
It sets a new state-of-the-art performance on matching and relative pose estimation tasks.
arXiv Detail & Related papers (2023-09-18T08:16:30Z) - WS-SfMLearner: Self-supervised Monocular Depth and Ego-motion Estimation
on Surgical Videos with Unknown Camera Parameters [0.0]
Building an accurate and robust self-supervised depth and camera ego-motion estimation system is gaining more attention from the computer vision community.
In this work, we aimed to build a self-supervised depth and ego-motion estimation system which can predict not only accurate depth maps and camera pose, but also camera intrinsic parameters.
arXiv Detail & Related papers (2023-08-22T20:35:24Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses for camera pose estimation.
Most importantly, we introduce two learned adaptive per-pixel weight mappings that balance contributions according to the input image content.
We validate our approach on the publicly available SCARED dataset and introduce a new in-vivo dataset, StereoMIS.
arXiv Detail & Related papers (2023-04-17T07:05:01Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
We present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.
A generated roadmap encodes the common anatomical paths taken in surgeries in the training set.
We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.
arXiv Detail & Related papers (2023-03-31T12:52:24Z) - Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion [51.19260542887099]
We show that self-supervision can be used to learn accurate depth and ego-motion estimation without prior knowledge of the camera model.
Inspired by the geometric model of Grossberg and Nayar, we introduce Neural Ray Surfaces (NRS), convolutional networks that represent pixel-wise projection rays.
We demonstrate the use of NRS for self-supervised learning of visual odometry and depth estimation from raw videos obtained using a wide variety of camera systems.
arXiv Detail & Related papers (2020-08-15T02:29:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.