論文の概要: Data-driven Force Observer for Human-Robot Interaction with Series Elastic Actuators using Gaussian Processes
- arxiv url: http://arxiv.org/abs/2405.08711v1
- Date: Tue, 14 May 2024 15:51:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:28:19.873529
- Title: Data-driven Force Observer for Human-Robot Interaction with Series Elastic Actuators using Gaussian Processes
- Title(参考訳): ガウス過程を用いた連続弾性アクチュエータとの人間-ロボットインタラクションのためのデータ駆動力オブザーバ
- Authors: Samuel Tesfazgi, Markus Keßler, Emilio Trigili, Armin Lederer, Sandra Hirche,
- Abstract要約: 本研究では,ガウス過程(GP)回帰を用いて未知の動的成分を学習する。
保証された推定誤差境界を導出し、安全クリティカルなアプリケーションでの使用を容易にする。
人-外骨格相互作用シナリオにおいて提案手法の有効性を実験的に示す。
- 参考スコア(独自算出の注目度): 4.229902091180109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring safety and adapting to the user's behavior are of paramount importance in physical human-robot interaction. Thus, incorporating elastic actuators in the robot's mechanical design has become popular, since it offers intrinsic compliance and additionally provide a coarse estimate for the interaction force by measuring the deformation of the elastic components. While observer-based methods have been shown to improve these estimates, they rely on accurate models of the system, which are challenging to obtain in complex operating environments. In this work, we overcome this issue by learning the unknown dynamics components using Gaussian process (GP) regression. By employing the learned model in a Bayesian filtering framework, we improve the estimation accuracy and additionally obtain an observer that explicitly considers local model uncertainty in the confidence measure of the state estimate. Furthermore, we derive guaranteed estimation error bounds, thus, facilitating the use in safety-critical applications. We demonstrate the effectiveness of the proposed approach experimentally in a human-exoskeleton interaction scenario.
- Abstract(参考訳): 安全性を確保し、ユーザの行動に適応することは、物理的な人間とロボットの相互作用において最重要となる。
このように、ロボットの機械的設計に弾性アクチュエータを組み込むことは、本質的なコンプライアンスを提供するとともに、弾性成分の変形を測定することで相互作用力の粗い推定を提供するため、普及している。
観測者に基づく手法はこれらの推定を改善することが示されているが、複雑な運用環境では入手が困難であるシステムの正確なモデルに依存している。
本研究では,ガウス過程(GP)回帰を用いて未知の動的成分を学習することにより,この問題を克服する。
ベイズフィルタフレームワークにおける学習モデルを用いることで,推定精度を向上させるとともに,状態推定の信頼度測定における局所モデルの不確実性を明確に考慮するオブザーバを得る。
さらに,保証された誤差境界を導出し,安全クリティカルなアプリケーションでの使用を容易にする。
人-外骨格相互作用シナリオにおいて提案手法の有効性を実験的に示す。
関連論文リスト
- Understanding Human Activity with Uncertainty Measure for Novelty in Graph Convolutional Networks [2.223052975765005]
本稿では,テンポラルフュージョングラフ畳み込みネットワークについて紹介する。
これは、アクティビティストリーム内の個々のアクションの境界推定が不十分であることを是正することを目的としている。
また、時間次元における過分割の問題も緩和する。
論文 参考訳(メタデータ) (2024-10-10T13:44:18Z) - UAHOI: Uncertainty-aware Robust Interaction Learning for HOI Detection [18.25576487115016]
本稿では,Human-Object Interaction(HOI)検出について述べる。
与えられた画像やビデオフレーム内の人間とオブジェクト間の相互作用を識別し、理解するという課題に対処する。
本研究では,不確実性を考慮したロバストなヒューマンオブジェクトインタラクション学習であるtextscUAHOIを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:06:39Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - JAB: Joint Adversarial Prompting and Belief Augmentation [81.39548637776365]
我々は,ブラックボックスターゲットモデルの強靭性を,敵対的プロンプトと信念の増大を通じて探索し,改善する共同枠組みを導入する。
このフレームワークは、自動的なレッド・チームリング手法を用いてターゲットモデルを探索し、信念強化器を用いて目標モデルの命令を生成し、敵のプローブに対するロバスト性を向上させる。
論文 参考訳(メタデータ) (2023-11-16T00:35:54Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Safe Machine-Learning-supported Model Predictive Force and Motion
Control in Robotics [0.0]
人間とロボットの相互作用や脆弱な物体のハンドリングのような多くのロボットタスクは、安全かつ高性能な操作を実現するために、動き制御と共に現れる力とモーメントの厳密な制御と制限を必要とする。
本研究では,学習支援型モデル予測力と運動制御方式を提案する。
論文 参考訳(メタデータ) (2023-03-08T13:30:02Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
本稿では,コンタクトリッチタスクに必要な力プロファイルの予測モデルを学習するための新しいアプローチを提案する。
このアプローチは、双方向Gated Recurrent Units (Bi-GRU) に基づく異常検出と適応力/インピーダンス制御を組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-01T05:23:34Z) - Counter-example Guided Learning of Bounds on Environment Behavior [11.357397596759172]
本稿では, 環境の正確なモデルなしで, 仕様適合性を評価可能なデータ駆動型ソリューションを提案する。
私たちのアプローチでは、データとシステムの望ましい振る舞いの仕様を使用して、環境の振る舞いの保守的な反応性境界を学習する。
論文 参考訳(メタデータ) (2020-01-20T19:58:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。