論文の概要: Hierarchical Resource Partitioning on Modern GPUs: A Reinforcement Learning Approach
- arxiv url: http://arxiv.org/abs/2405.08754v1
- Date: Tue, 14 May 2024 16:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:18:28.194301
- Title: Hierarchical Resource Partitioning on Modern GPUs: A Reinforcement Learning Approach
- Title(参考訳): 現代GPUの階層的資源分割:強化学習アプローチ
- Authors: Urvij Saroliya, Eishi Arima, Dai Liu, Martin Schulz,
- Abstract要約: 本稿では,階層的分割のセットアップと,与えられたジョブ集合からの協調スケジューリンググループの選択を包括的に協調する手法を提案する。
これにより、時間共有スケジューリングに比べて最大スループットが1.87倍向上する。
- 参考スコア(独自算出の注目度): 1.076745840431781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: GPU-based heterogeneous architectures are now commonly used in HPC clusters. Due to their architectural simplicity specialized for data-level parallelism, GPUs can offer much higher computational throughput and memory bandwidth than CPUs in the same generation do. However, as the available resources in GPUs have increased exponentially over the past decades, it has become increasingly difficult for a single program to fully utilize them. As a consequence, the industry has started supporting several resource partitioning features in order to improve the resource utilization by co-scheduling multiple programs on the same GPU die at the same time. Driven by the technological trend, this paper focuses on hierarchical resource partitioning on modern GPUs, and as an example, we utilize a combination of two different features available on recent NVIDIA GPUs in a hierarchical manner: MPS (Multi-Process Service), a finer-grained logical partitioning; and MIG (Multi-Instance GPU), a coarse-grained physical partitioning. We propose a method for comprehensively co-optimizing the setup of hierarchical partitioning and the selection of co-scheduling groups from a given set of jobs, based on reinforcement learning using their profiles. Our thorough experimental results demonstrate that our approach can successfully set up job concurrency, partitioning, and co-scheduling group selections simultaneously. This results in a maximum throughput improvement by a factor of 1.87 compared to the time-sharing scheduling.
- Abstract(参考訳): GPUベースの異種アーキテクチャは現在、HPCクラスタで一般的に使用されている。
データレベルの並列処理に特化したアーキテクチャ上の単純さのため、GPUは、同じ世代のCPUよりもはるかに高い計算スループットとメモリ帯域を提供することができる。
しかし、過去数十年でGPUの利用可能なリソースが指数関数的に増加したため、単一のプログラムがそれらを完全に活用することはますます困難になっている。
その結果、同じGPU上で複数のプログラムを同時にスケジュールすることで、リソース利用を改善するために、業界はいくつかのリソースパーティショニング機能のサポートを開始しました。
本稿では,最新のGPU上での階層的なリソース分割に注目し,その例として,より微細な論理分割であるMPS(Multi-Process Service)と粗粒度の物理分割であるMIG(Multi-Instance GPU)という,最近のNVIDIA GPUで利用可能な2つの異なる特徴の組み合わせを利用する。
本稿では,階層的分割のセットアップと,そのプロファイルを用いた強化学習に基づいて,与えられたジョブ群からの協調スケジューリンググループの選択を包括的に最適化する手法を提案する。
提案手法は,ジョブの同時実行,分割,グループ選択のスケジューリングを同時に行うことができることを示す。
これにより、時間共有スケジューリングに比べて最大スループットが1.87倍向上する。
関連論文リスト
- Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
トランスフォーマーと大規模言語モデル(LLM)は、すべてのドメインで急速に採用されている。
変圧器の訓練は非常に高価で、しばしば記憶壁にぶつかる」
本稿では,LLMをCPUまたはGPU上で更新フェーズをスケジュールしたサブグループに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-10-26T00:43:59Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - An Analysis of Collocation on GPUs for Deep Learning Training [0.0]
マルチインスタンスGPU(MIG)はNVIDIAが導入した新しい技術で、GPUをより良いワークロードに分割することができる。
本稿では,MIG対応A100 GPUの各種サイズとモデルの組み合わせを含むディープラーニングワークロードにおける性能について検討する。
論文 参考訳(メタデータ) (2022-09-13T14:13:06Z) - PARIS and ELSA: An Elastic Scheduling Algorithm for Reconfigurable
Multi-GPU Inference Servers [0.9854614058492648]
NVIDIAのAmpere GPUアーキテクチャは、1つの大きなモノリシックGPUを複数の小さな"GPUパーティション"に"再構成"する機能を提供する。
本稿では,この新しいGPUアーキテクチャを再構成性で検討し,高性能なマルチGPUML推論サーバを開発する。
論文 参考訳(メタデータ) (2022-02-27T23:30:55Z) - PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine [68.8204255655161]
Support Vector Machines (SVM) は機械学習で広く使われている。
しかし、現代的で最適化された実装でさえ、最先端ハードウェア上の大きな非自明な高密度データセットにはうまくスケールしない。
PLSSVMはLVMのドロップイン代替として使用できる。
論文 参考訳(メタデータ) (2022-02-25T13:24:23Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
本稿では,Adaptive SGDが4つの最先端ソリューションよりも精度が高いことを示す。
本稿では,Adaptive SGDが時間と精度で4つの最先端ソリューションより優れていることを示す。
論文 参考訳(メタデータ) (2021-10-13T20:58:15Z) - RTGPU: Real-Time GPU Scheduling of Hard Deadline Parallel Tasks with
Fine-Grain Utilization [5.02836935036198]
本論文では,複数のGPUアプリケーションの実行をリアルタイムにスケジュール可能なRTGPUを提案する。
提案手法は,従来の作業に比べてスケジューリング性に優れ,複数のGPUアプリケーションに厳しい期限をリアルタイムに保証する。
論文 参考訳(メタデータ) (2021-01-25T22:34:06Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
この研究は、人気のあるDual Block-Coordinate Ascent原則に基づく新しいMAP-solverを導入している。
驚いたことに、性能の低い解法に小さな変更を加えることで、既存の解法を大きなマージンで大幅に上回る新しい解法MPLP++を導出します。
論文 参考訳(メタデータ) (2020-04-16T16:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。