Measurement-induced phase transitions in systems with diffusive dynamics
- URL: http://arxiv.org/abs/2405.08861v2
- Date: Thu, 03 Oct 2024 17:12:33 GMT
- Title: Measurement-induced phase transitions in systems with diffusive dynamics
- Authors: Hyunsoo Ha, Akshat Pandey, Sarang Gopalakrishnan, David A. Huse,
- Abstract summary: We show that the universality class of the MIPT is drastically altered when the system is coupled to a conserved density.
We find Griffiths-like'' effects due to rare space-time regions where the diffusive measurers have a low or high density.
- Score: 0.8861685735369552
- License:
- Abstract: The competition between scrambling and projective measurements can lead to measurement-induced entanglement phase transitions (MIPT). In this work, we show that the universality class of the MIPT is drastically altered when the system is coupled to a diffusing conserved density. Specifically, we consider a 1+1d random Clifford circuit locally monitored by classically diffusing particles (``measurers''). The resulting diffusive correlations in the measurement density are a relevant perturbation to the usual space-time random MIPT critical point, producing a new universality class for this phase transition. We find ``Griffiths-like'' effects due to rare space-time regions where, e.g., the diffusive measurers have a low or high density, but these are considerably weaker than the Griffiths effects that occur with quenched randomness that produce rare spatial regions with infinite lifetime.
Related papers
- Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Measurement-Induced Phase Transition in Free Bosons [0.0]
Competition between quantum many-particle dynamics and continuous monitoring can lead to measurement-induced phase transitions.
We study the entanglement structure in continuously monitored free bosons with long-range couplings.
arXiv Detail & Related papers (2024-05-30T07:31:43Z) - Measurement-induced transitions beyond Gaussianity: a single particle description [0.0]
Repeated measurements can induce entanglement phase transitions in the dynamics of quantum systems.
By comparing the entanglement and non-Gaussianity structure of different protocols, we propose a new single-particle indicator of the measurement-induced phase transition.
arXiv Detail & Related papers (2023-11-15T15:34:44Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - A numerical study of measurement-induced phase transitions in the
Sachdev-Ye-Kitaev model [0.0]
We numerically simulate monitored dynamics in the all-to-all Sachdev-Ye-Kitaev model for finite N.
We provide numerical evidence to the contrary, implying that entanglement and purification MIPTs are indeed two distinct phenomena.
arXiv Detail & Related papers (2023-01-12T18:30:30Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Measurements conspire nonlocally to restructure critical quantum states [0.0]
We study how local measurements perfomed on critical quantum ground states affect long-distance correlations.
We show that arbitrarily weak local measurements, performed over extended regions of space, can conspire to drive transitions in long-distance correlations.
arXiv Detail & Related papers (2022-07-19T18:00:06Z) - Monitored Open Fermion Dynamics: Exploring the Interplay of Measurement,
Decoherence, and Free Hamiltonian Evolution [0.0]
We investigate the impact of dephasing and the inevitable evolution into a non-Gaussian, mixed state, on the dynamics of monitored fermions.
For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust measurement-induced phase transition.
We interpret this as a signature of gapless, classical diffusion, which is stabilized by the balanced interplay of Hamiltonian dynamics, measurements, and decoherence.
arXiv Detail & Related papers (2022-02-28T19:00:13Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.