論文の概要: RS-Reg: Probabilistic and Robust Certified Regression Through Randomized Smoothing
- arxiv url: http://arxiv.org/abs/2405.08892v1
- Date: Tue, 14 May 2024 18:10:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 15:05:10.386338
- Title: RS-Reg: Probabilistic and Robust Certified Regression Through Randomized Smoothing
- Title(参考訳): RS-Reg:ランダムな平滑化による確率的かつロバストな回帰
- Authors: Aref Miri Rekavandi, Olga Ohrimenko, Benjamin I. P. Rubinstein,
- Abstract要約: 我々は $ell$ norm を用いて入力データポイント上の上限を設定する方法を示す。
次に、出力が有界な回帰モデルの族を扱う際に、摂動入力の認証された上限を導出する。
シミュレーションにより, 理論結果の有効性を検証し, 単純な平滑化関数の利点と限界を明らかにする。
- 参考スコア(独自算出の注目度): 19.03441416869426
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Randomized smoothing has shown promising certified robustness against adversaries in classification tasks. Despite such success with only zeroth-order access to base models, randomized smoothing has not been extended to a general form of regression. By defining robustness in regression tasks flexibly through probabilities, we demonstrate how to establish upper bounds on input data point perturbation (using the $\ell_2$ norm) for a user-specified probability of observing valid outputs. Furthermore, we showcase the asymptotic property of a basic averaging function in scenarios where the regression model operates without any constraint. We then derive a certified upper bound of the input perturbations when dealing with a family of regression models where the outputs are bounded. Our simulations verify the validity of the theoretical results and reveal the advantages and limitations of simple smoothing functions, i.e., averaging, in regression tasks. The code is publicly available at \url{https://github.com/arekavandi/Certified_Robust_Regression}.
- Abstract(参考訳): ランダムな平滑化は、分類タスクにおける敵に対する確証のある堅牢性を示している。
ベースモデルへのゼロ次アクセスのみの成功にもかかわらず、ランダム化された平滑化は一般的な回帰形式に拡張されていない。
確率によって柔軟に回帰タスクのロバスト性を定義することにより、有効出力を観測するユーザ特定確率に対して、入力データ点摂動($\ell_2$ノルムを使用)上の境界を確立する方法を示す。
さらに,回帰モデルが制約なく動作するシナリオにおいて,基本平均関数の漸近特性を示す。
次に、出力が有界な回帰モデルの族を扱う際に、入力摂動の証明された上限を導出する。
シミュレーションは理論結果の有効性を検証し、回帰タスクにおける単純な平滑化関数(平均化)の利点と限界を明らかにする。
コードは \url{https://github.com/arekavandi/Certified_Robust_Regression} で公開されている。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Beyond the Norms: Detecting Prediction Errors in Regression Models [26.178065248948773]
本稿では,回帰アルゴリズムにおける信頼できない振る舞いを検出するという課題に取り組む。
回帰器の出力が特定の不一致(または誤り)を超えた場合、回帰における不確実性の概念を導入する。
複数の回帰タスクに対する誤り検出の実証的改善を示す。
論文 参考訳(メタデータ) (2024-06-11T05:51:44Z) - A Pseudo-Semantic Loss for Autoregressive Models with Logical
Constraints [87.08677547257733]
ニューロシンボリックAIは、純粋にシンボリックな学習とニューラルな学習のギャップを埋める。
本稿では,ニューラルネットワークの出力分布に対するシンボリック制約の可能性を最大化する方法を示す。
また,スドクと最短経路予測の手法を自己回帰世代として評価した。
論文 参考訳(メタデータ) (2023-12-06T20:58:07Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
本稿では,ユーザの信頼度レベルに対する真の回帰関数に対して,正確に,分布自由で,漸近的に保証されていない信頼領域を構築するための再サンプリングフレームワークを提案する。
構築された信頼領域は強い整合性、すなわち、任意の偽モデルが確率 1 で長期にわたって除外されることが証明された。
論文 参考訳(メタデータ) (2023-08-03T15:52:27Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Efficient Truncated Linear Regression with Unknown Noise Variance [26.870279729431328]
雑音のばらつきが不明な場合に, 線形回帰の計算的, 統計的に効率的な推定器を提案する。
提案手法は, トランキャット標本の負の類似度に対して, プロジェクテッド・グラディエント・ディフレッシュを効果的に実装することに基づく。
論文 参考訳(メタデータ) (2022-08-25T12:17:37Z) - ReLU Regression with Massart Noise [52.10842036932169]
本稿では、ReLU回帰の基本的問題として、Rectified Linear Units(ReLU)をデータに適合させることを目標としている。
我々は自然およびよく研究された半ランダムノイズモデルであるMassartノイズモデルにおけるReLU回帰に着目した。
このモデルにおいて,パラメータの正確な回復を実現する効率的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-09-10T02:13:22Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Ridge Regression Revisited: Debiasing, Thresholding and Bootstrap [4.142720557665472]
リッジレグレッションは、デバイアスとしきい値の設定の後、Lassoに対していくつかの利点をもたらすので、見直す価値があるかもしれない。
本稿では,デバイアス付き及びしきい値付きリッジ回帰法を定義し,一貫性とガウス近似の定理を証明した。
推定に加えて予測の問題も考慮し,予測間隔に合わせた新しいハイブリッドブートストラップアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-17T05:04:10Z) - Censored Quantile Regression Forest [81.9098291337097]
我々は、検閲に適応し、データが検閲を示さないときに量子スコアをもたらす新しい推定方程式を開発する。
提案手法は, パラメトリックなモデリング仮定を使わずに, 時間単位の定量を推定することができる。
論文 参考訳(メタデータ) (2020-01-08T23:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。