論文の概要: Distribution-Free Inference for the Regression Function of Binary
Classification
- arxiv url: http://arxiv.org/abs/2308.01835v1
- Date: Thu, 3 Aug 2023 15:52:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-08-04 13:40:37.187982
- Title: Distribution-Free Inference for the Regression Function of Binary
Classification
- Title(参考訳): 二項分類の回帰関数に対する分布自由推論
- Authors: Ambrus Tam\'as and Bal\'azs Csan\'ad Cs\'aji
- Abstract要約: 本稿では,ユーザの信頼度レベルに対する真の回帰関数に対して,正確に,分布自由で,漸近的に保証されていない信頼領域を構築するための再サンプリングフレームワークを提案する。
構築された信頼領域は強い整合性、すなわち、任意の偽モデルが確率 1 で長期にわたって除外されることが証明された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the key objects of binary classification is the regression function,
i.e., the conditional expectation of the class labels given the inputs. With
the regression function not only a Bayes optimal classifier can be defined, but
it also encodes the corresponding misclassification probabilities. The paper
presents a resampling framework to construct exact, distribution-free and
non-asymptotically guaranteed confidence regions for the true regression
function for any user-chosen confidence level. Then, specific algorithms are
suggested to demonstrate the framework. It is proved that the constructed
confidence regions are strongly consistent, that is, any false model is
excluded in the long run with probability one. The exclusion is quantified with
probably approximately correct type bounds, as well. Finally, the algorithms
are validated via numerical experiments, and the methods are compared to
approximate asymptotic confidence ellipsoids.
- Abstract(参考訳): 二分分類の主要な対象の1つは回帰関数、すなわち入力が与えられたクラスラベルの条件付き期待値である。
回帰関数はベイズ最適分類器を定義するだけでなく、対応する誤分類確率を符号化する。
本稿では,ユーザの信頼度レベルに対する真の回帰関数に対して,正確な分布自由かつ漸近的に保証されていない信頼領域を構築するための再サンプリングフレームワークを提案する。
次に、そのフレームワークを実証するために特定のアルゴリズムを提案する。
構築された信頼領域は強い整合性、すなわち任意の偽モデルが確率 1 で長期にわたって除外されることが証明された。
除外は、おそらくほぼ正しい型境界で定量化される。
最後に、これらのアルゴリズムを数値実験により検証し、近似的な漸近的信頼楕円体と比較する。
関連論文リスト
- BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
現在のディープラーニングアルゴリズムは通常、後部確率を簡易に推定することで最適分類器を解く。
この単純な手法は、厳密にバランスのとれた学術ベンチマークデータセットに有効であることが証明されている。
しかし、これは現実世界の長い尾のデータ分布には適用できない。
本稿では,データ分布のより正確な理論的推定を行う新しい手法(BAPE)を提案する。
論文 参考訳(メタデータ) (2025-06-29T15:12:50Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - EigenVI: score-based variational inference with orthogonal function expansions [23.696028065251497]
EigenVIはブラックボックス変分推論(BBVI)のための固有値に基づくアプローチである
我々はEigenVIを用いて様々なターゲット分布を近似し、例えば後方dbのベイズモデルのベンチマークスイートを含む。
論文 参考訳(メタデータ) (2024-10-31T15:48:34Z) - A Pseudo-Semantic Loss for Autoregressive Models with Logical
Constraints [87.08677547257733]
ニューロシンボリックAIは、純粋にシンボリックな学習とニューラルな学習のギャップを埋める。
本稿では,ニューラルネットワークの出力分布に対するシンボリック制約の可能性を最大化する方法を示す。
また,スドクと最短経路予測の手法を自己回帰世代として評価した。
論文 参考訳(メタデータ) (2023-12-06T20:58:07Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Calibrated Multiple-Output Quantile Regression with Representation
Learning [12.826754199680472]
我々は,一様分布を持つ応答の表現を深層生成モデルを用いて学習する。
次に、解を応答の元の空間に変換する。
実データと合成データの両方を用いて実験を行った結果,本手法は比較的小さい領域を構成することがわかった。
論文 参考訳(メタデータ) (2021-10-02T14:50:15Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Root-finding Approaches for Computing Conformal Prediction Set [18.405645120971496]
共形予測は、以前の同一分布および交換可能な観測に基づいて、特徴ベクトルの未観測応答に対する信頼領域を構築する。
我々は,共形予測集合が古典的ルートフィンディングソフトウェアによって効率的に近似できる区間であるという事実を活用する。
論文 参考訳(メタデータ) (2021-04-14T06:41:12Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Exact Distribution-Free Hypothesis Tests for the Regression Function of
Binary Classification via Conditional Kernel Mean Embeddings [0.0]
条件付きカーネル平均埋め込みに基づく二項分類の回帰関数に対する2つの仮説試験を提案する。
テストは柔軟な方法で導入され、タイプiのエラーの正確な確率を制御できます。
論文 参考訳(メタデータ) (2021-03-08T22:31:23Z) - Estimation and Applications of Quantiles in Deep Binary Classification [0.0]
チェック損失に基づく量子回帰は統計学において広く使われている推論パラダイムである。
二項分類設定におけるチェック損失の類似について考察する。
我々は、予測が信頼できるかどうかを判断するために使用できる個別信頼度スコアを開発する。
論文 参考訳(メタデータ) (2021-02-09T07:07:42Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
決定論的報酬を有する1層ニューラルネットバンディットにおいても,グローバル収束は統計的に難解であることを示す。
非線形バンディットとRLの両方に対して,オンラインモデル学習者による仮想アセンジ(Virtual Ascent with Online Model Learner)というモデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-08T12:41:56Z) - Optimal strategies for reject option classifiers [0.0]
拒絶オプションの分類では、分類器は予測から逸脱する不確実なケースで許可される。
我々は、最小選択リスクと保証カバレッジを持つ分類器を求める有界被覆モデルという対称的な定義を作成した。
任意のブラックボックス分類器の例から適切な不確かさスコアを学習するための2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-29T11:09:32Z) - Certifying Confidence via Randomized Smoothing [151.67113334248464]
ランダムな平滑化は、高次元の分類問題に対して良好な証明されたロバスト性を保証することが示されている。
ほとんどの平滑化法は、下層の分類器が予測する信頼性に関する情報を与えてくれない。
そこで本研究では,スムーズな分類器の予測信頼度を評価するために,認証ラジイを生成する手法を提案する。
論文 参考訳(メタデータ) (2020-09-17T04:37:26Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
本稿では、生成モデル(シミュレータ)へのアクセスを想定して、強化学習のサンプル効率について検討する。
最初に$gamma$-discounted infinite-horizon Markov decision process (MDPs) with state space $mathcalS$ and action space $mathcalA$を考える。
対象の精度を考慮すれば,モデルに基づく計画アルゴリズムが最小限のサンプルの複雑さを実現するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-05-26T17:53:18Z) - Minimax Semiparametric Learning With Approximate Sparsity [3.5136198842746524]
本稿では,古典的半パラメトリック理論による近似モデル空間性の概念を定式化する。
回帰勾配と平均微分のミニマックス速度を導出し、これらの境界は低次元の半パラメトリック設定の値よりもかなり大きいことがわかった。
論文 参考訳(メタデータ) (2019-12-27T16:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。