論文の概要: Computation-Aware Kalman Filtering and Smoothing
- arxiv url: http://arxiv.org/abs/2405.08971v1
- Date: Tue, 14 May 2024 21:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:55:25.136060
- Title: Computation-Aware Kalman Filtering and Smoothing
- Title(参考訳): 計算を考慮したカルマンフィルタと平滑化
- Authors: Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig,
- Abstract要約: 本稿では,高次元ガウス・オヴモデルに対する確率論的数値推論を提案する。
我々のアルゴリズムはGPUアクセラレーションを活用し、予測コストと不確実性の間の調整可能なトレードオフを可能にする。
- 参考スコア(独自算出の注目度): 27.55456716194024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kalman filtering and smoothing are the foundational mechanisms for efficient inference in Gauss-Markov models. However, their time and memory complexities scale prohibitively with the size of the state space. This is particularly problematic in spatiotemporal regression problems, where the state dimension scales with the number of spatial observations. Existing approximate frameworks leverage low-rank approximations of the covariance matrix. Since they do not model the error introduced by the computational approximation, their predictive uncertainty estimates can be overly optimistic. In this work, we propose a probabilistic numerical method for inference in high-dimensional Gauss-Markov models which mitigates these scaling issues. Our matrix-free iterative algorithm leverages GPU acceleration and crucially enables a tunable trade-off between computational cost and predictive uncertainty. Finally, we demonstrate the scalability of our method on a large-scale climate dataset.
- Abstract(参考訳): カルマンフィルタリングと滑らか化はガウス・マルコフモデルにおける効率的な推論の基礎的なメカニズムである。
しかし、その時間とメモリの複雑さは、状態空間のサイズと違法にスケールする。
これは空間観測の回数とともに状態次元がスケールする時空間回帰問題において特に問題となる。
既存の近似フレームワークは共分散行列の低ランク近似を利用する。
計算近似によって導入された誤差をモデル化しないので、予測的不確実性推定は過度に楽観的である。
本研究では,これらのスケーリング問題を緩和する高次元ガウス・マルコフモデルにおいて,確率論的数値計算法を提案する。
行列フリー反復アルゴリズムはGPUアクセラレーションを活用し,計算コストと予測の不確実性との間の調整可能なトレードオフを可能にする。
最後に,大規模気候データセット上での手法のスケーラビリティについて述べる。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
本稿では,高次元量子化予測のための確率論的機械学習手法を提案する。
擬似ベイズ的フレームワークとスケールした学生tとランゲヴィン・モンテカルロを併用して効率的な計算を行う。
その効果はシミュレーションや実世界のデータを通じて検証され、そこでは確立された頻繁な手法やベイズ的手法と競合する。
論文 参考訳(メタデータ) (2024-09-03T08:01:01Z) - Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
本稿では, FSAを用いた確率, 勾配, 予測分布の計算コストの削減に, 反復法をどのように利用できるかを示す。
また,推定法や反復法に依存する予測分散を計算する新しい,正確かつ高速な手法を提案する。
すべてのメソッドは、ハイレベルなPythonとRパッケージを備えたフリーのC++ソフトウェアライブラリで実装されている。
論文 参考訳(メタデータ) (2024-05-23T12:25:22Z) - The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering
In High Dimensions [32.30527731746912]
低ランク行列の低ランク近似を伝播する新しい近似フィルタリング・平滑化法を提案する。
提案手法は, 計算複雑性を(カルマンフィルタの場合) 立方体から, 最悪ケースにおける状態空間サイズにおけるエンフクトラティックに還元する。
論文 参考訳(メタデータ) (2023-06-13T13:50:31Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
ガウスのプロセスはデータセットのサイズとともに違法にスケールする。
多くの近似法が開発されており、必然的に近似誤差を導入している。
この余分な不確実性の原因は、計算が限られているため、近似後部を使用すると完全に無視される。
本研究では,観測された有限個のデータと有限個の計算量の両方から生じる組合せ不確実性を一貫した推定を行う手法の開発を行う。
論文 参考訳(メタデータ) (2022-05-30T22:16:25Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。