論文の概要: Sparse Algorithms for Markovian Gaussian Processes
- arxiv url: http://arxiv.org/abs/2103.10710v1
- Date: Fri, 19 Mar 2021 09:50:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 14:42:48.494678
- Title: Sparse Algorithms for Markovian Gaussian Processes
- Title(参考訳): マルコフガウス過程のスパースアルゴリズム
- Authors: William J. Wilkinson, Arno Solin, Vincent Adam
- Abstract要約: スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
- 参考スコア(独自算出の注目度): 18.999495374836584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate Bayesian inference methods that scale to very large datasets are
crucial in leveraging probabilistic models for real-world time series. Sparse
Markovian Gaussian processes combine the use of inducing variables with
efficient Kalman filter-like recursions, resulting in algorithms whose
computational and memory requirements scale linearly in the number of inducing
points, whilst also enabling parallel parameter updates and stochastic
optimisation. Under this paradigm, we derive a general site-based approach to
approximate inference, whereby we approximate the non-Gaussian likelihood with
local Gaussian terms, called sites. Our approach results in a suite of novel
sparse extensions to algorithms from both the machine learning and signal
processing literature, including variational inference, expectation
propagation, and the classical nonlinear Kalman smoothers. The derived methods
are suited to large time series, and we also demonstrate their applicability to
spatio-temporal data, where the model has separate inducing points in both time
and space.
- Abstract(参考訳): 非常に大きなデータセットにスケールする近似ベイズ推定法は、実世界の時系列に確率モデルを活用する上で重要である。
スパースマルコフ・ガウシアン過程は、変数の誘導と効率的なカルマンフィルタのような再帰を組み合わせ、計算とメモリ要求が誘導点数で線形にスケールするアルゴリズムとなり、同時にパラレルパラメータの更新と確率最適化も可能である。
このパラダイムの下では、近似的推論に対する一般のサイトベースアプローチを導出し、非ガウス的可能性と局所ガウス的用語であるサイトを近似する。
提案手法は, 変分推論, 期待伝播, 古典非線形カルマンスムーサなど, 機械学習と信号処理の文献から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
提案手法は大規模時系列に適しており,時間と空間の差分点を持つ時空間データに適用可能であることを示す。
関連論文リスト
- Iterative Methods for Vecchia-Laplace Approximations for Latent Gaussian Process Models [11.141688859736805]
本稿では,いくつかのプレコンディショナーを導入,解析し,新しい収束結果の導出を行い,予測分散を正確に近似する新しい手法を提案する。
特に、Coleskyベースの計算と比較すると、桁違いの高速化が得られる。
すべてのメソッドは、ハイレベルなPythonとRパッケージを備えたフリーのC++ソフトウェアライブラリで実装されている。
論文 参考訳(メタデータ) (2023-10-18T14:31:16Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Amortised inference of fractional Brownian motion with linear
computational complexity [0.0]
ランダムウォークのパラメータを推定するために,シミュレーションベースで償却されたベイズ推定手法を提案する。
提案手法は歩行パラメータの後方分布を確率自由な方法で学習する。
この手法を適用して、環境中の有限デコリレーション時間をさらに個々の軌道から推定できることを示す。
論文 参考訳(メタデータ) (2022-03-15T14:43:16Z) - Spatio-Temporal Variational Gaussian Processes [26.60276485130467]
時空間フィルタリングと自然変動推論を組み合わせたガウス過程推論にスケーラブルなアプローチを導入する。
還元された誘導点集合上で状態空間モデルを構成するスパース近似を導出する。
分離可能なマルコフカーネルの場合、完全スパースケースは標準変分GPを正確に回復する。
論文 参考訳(メタデータ) (2021-11-02T16:53:31Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
従属拡散過程を変調したマルコフジャンプ過程に基づくモデルを提案する。
我々は,新しい連続時間変動推定アルゴリズムを開発した。
モデル仮定と実世界の実例に基づいて,我々のアルゴリズムを広範囲に評価する。
論文 参考訳(メタデータ) (2021-09-29T15:19:51Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Fast Variational Learning in State-Space Gaussian Process Models [29.630197272150003]
我々は共役計算変分推論と呼ばれる既存の手法に基づいて構築する。
ジャスト・イン・タイムのコンパイルを利用する効率的なJAX実装を提供しています。
我々の手法は、何百万ものデータポイントを持つ時系列にスケールできる状態空間GPモデルにおいて、高速かつ安定した変分推論をもたらす。
論文 参考訳(メタデータ) (2020-07-09T12:06:34Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。