Computation-Aware Kalman Filtering and Smoothing
- URL: http://arxiv.org/abs/2405.08971v1
- Date: Tue, 14 May 2024 21:31:11 GMT
- Title: Computation-Aware Kalman Filtering and Smoothing
- Authors: Marvin Pförtner, Jonathan Wenger, Jon Cockayne, Philipp Hennig,
- Abstract summary: We propose a probabilistic numerical inference for high-dimensional Gauss-ov models.
Our algorithm leverages GPU acceleration and crucially enables a tunable trade-off between predictive cost and uncertainty.
- Score: 27.55456716194024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kalman filtering and smoothing are the foundational mechanisms for efficient inference in Gauss-Markov models. However, their time and memory complexities scale prohibitively with the size of the state space. This is particularly problematic in spatiotemporal regression problems, where the state dimension scales with the number of spatial observations. Existing approximate frameworks leverage low-rank approximations of the covariance matrix. Since they do not model the error introduced by the computational approximation, their predictive uncertainty estimates can be overly optimistic. In this work, we propose a probabilistic numerical method for inference in high-dimensional Gauss-Markov models which mitigates these scaling issues. Our matrix-free iterative algorithm leverages GPU acceleration and crucially enables a tunable trade-off between computational cost and predictive uncertainty. Finally, we demonstrate the scalability of our method on a large-scale climate dataset.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
We show how iterative methods can be used to reduce the computational costs for calculating likelihoods, gradients, and predictive distributions with FSAs.
We also present a novel, accurate, and fast way to calculate predictive variances relying on estimations and iterative methods.
All methods are implemented in a free C++ software library with high-level Python and R packages.
arXiv Detail & Related papers (2024-05-23T12:25:22Z) - The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering
In High Dimensions [32.30527731746912]
We propose a novel approximate filtering and smoothing method which propagates lowrank approximations of low-rank matrices.
Our method reduces computational complexity from cubic (for the Kalman filter) to emphquadratic in the state-space size in the worst-case.
arXiv Detail & Related papers (2023-06-13T13:50:31Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.