Deep Learning in Earthquake Engineering: A Comprehensive Review
- URL: http://arxiv.org/abs/2405.09021v1
- Date: Wed, 15 May 2024 01:22:30 GMT
- Title: Deep Learning in Earthquake Engineering: A Comprehensive Review
- Authors: Yazhou Xie,
- Abstract summary: The literature lacks a comprehensive review that systematically covers a consistent scope intersecting Deep Learning (DL) and earthquake engineering.
The article first discusses methodological advances to elucidate various applicable DL techniques, such as multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), generative adversarial network (GAN), autoencoder (AE), transfer learning (TL), reinforcement learning (RL), and graph neural network (GNN)
A thorough research landscape is then disclosed by exploring various DL applications across different research topics, including vision-based seismic damage assessment and structural characterization, seismic demand and
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This article surveys the growing interest in utilizing Deep Learning (DL) as a powerful tool to address challenging problems in earthquake engineering. Despite decades of advancement in domain knowledge, issues such as uncertainty in earthquake occurrence, unpredictable seismic loads, nonlinear structural responses, and community engagement remain difficult to tackle using domain-specific methods. DL offers promising solutions by leveraging its data-driven capacity for nonlinear mapping, sequential data modeling, automatic feature extraction, dimensionality reduction, optimal decision-making, etc. However, the literature lacks a comprehensive review that systematically covers a consistent scope intersecting DL and earthquake engineering. To bridge the gap, the article first discusses methodological advances to elucidate various applicable DL techniques, such as multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), generative adversarial network (GAN), autoencoder (AE), transfer learning (TL), reinforcement learning (RL), and graph neural network (GNN). A thorough research landscape is then disclosed by exploring various DL applications across different research topics, including vision-based seismic damage assessment and structural characterization, seismic demand and damage state prediction, seismic response history prediction, regional seismic risk assessment and community resilience, ground motion (GM) for engineering use, seismic response control, and the inverse problem of system/damage identification. Suitable DL techniques for each research topic are identified, emphasizing the preeminence of CNN for vision-based tasks, RNN for sequential data, RL for community resilience, and unsupervised learning for GM analysis. The article also discusses opportunities and challenges for leveraging DL in earthquake engineering research and practice.
Related papers
- Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
This paper provides a comprehensive review of machine learning-based Network Intrusion Detection Systems (NIDS)
We critically examine existing research in NIDS, highlighting key trends, strengths, and limitations.
We discuss emerging challenges in the field and offer insights for the development of more robust and resilient NIDS.
arXiv Detail & Related papers (2024-09-27T13:27:29Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
We present a novel framework based in the theory of hypergraphs and topology to understand data from cyber networks.
We will demonstrate concrete examples in a large-scale cyber network dataset.
arXiv Detail & Related papers (2023-11-08T00:00:33Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
We perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks.
Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy.
We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks.
arXiv Detail & Related papers (2021-08-18T21:19:26Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.