論文の概要: Dynamic Loss Decay based Robust Oriented Object Detection on Remote Sensing Images with Noisy Labels
- arxiv url: http://arxiv.org/abs/2405.09024v1
- Date: Wed, 15 May 2024 01:29:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:45:30.651648
- Title: Dynamic Loss Decay based Robust Oriented Object Detection on Remote Sensing Images with Noisy Labels
- Title(参考訳): 雑音ラベルを用いたリモートセンシング画像による動的損失減衰に基づくロバスト指向物体検出
- Authors: Guozhang Liu, Ting Liu, Mengke Yuan, Tao Pang, Guangxing Yang, Hao Fu, Tao Wang, Tongkui Liao,
- Abstract要約: 本研究では,動的損失減衰(DLD)機構を用いた頑健な指向性リモートセンシングオブジェクト検出手法を提案する。
弊社のソリューションは、2023年のNational Big Data and Computing Intelligence Challengeのノイズの多いラベルで、“サブメーターのリモートセンシング画像に基づくきめ細かいオブジェクト検出”の2位を獲得した。
- 参考スコア(独自算出の注目度): 17.211935951030114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ambiguous appearance, tiny scale, and fine-grained classes of objects in remote sensing imagery inevitably lead to the noisy annotations in category labels of detection dataset. However, the effects and treatments of the label noises are underexplored in modern oriented remote sensing object detectors. To address this issue, we propose a robust oriented remote sensing object detection method through dynamic loss decay (DLD) mechanism, inspired by the two phase ``early-learning'' and ``memorization'' learning dynamics of deep neural networks on clean and noisy samples. To be specific, we first observe the end point of early learning phase termed as EL, after which the models begin to memorize the false labels that significantly degrade the detection accuracy. Secondly, under the guidance of the training indicator, the losses of each sample are ranked in descending order, and we adaptively decay the losses of the top K largest ones (bad samples) in the following epochs. Because these large losses are of high confidence to be calculated with wrong labels. Experimental results show that the method achieves excellent noise resistance performance tested on multiple public datasets such as HRSC2016 and DOTA-v1.0/v2.0 with synthetic category label noise. Our solution also has won the 2st place in the "fine-grained object detection based on sub-meter remote sensing imagery" track with noisy labels of 2023 National Big Data and Computing Intelligence Challenge.
- Abstract(参考訳): リモートセンシング画像における不明瞭な外観、小さなスケール、微粒なオブジェクトのクラスは、検出データセットのカテゴリラベルにおけるノイズの多いアノテーションを必然的に引き起こす。
しかし、現代の指向性リモートセンシングオブジェクト検出器では、ラベルノイズの効果と治療が過小評価されている。
この問題に対処するために、クリーンでノイズの多いサンプル上での深層ニューラルネットワークの学習力学にインスパイアされた動的損失減衰(DLD)機構による頑健な指向性リモートセンシング法を提案する。
具体的には、まずELと呼ばれる早期学習フェーズの終点を観察し、その後、モデルが検出精度を著しく低下させる偽ラベルを記憶し始めた。
第2に,トレーニング指標の指導の下で,各試料の損失を下位順にランク付けし,次の時代において上位K個(バッドサンプル)の損失を適応的に減少させる。
これらの大きな損失は、間違ったラベルで計算される信頼度が高いためである。
実験結果から,HRSC2016やDOTA-v1.0/v2.0などの複数の公開データセットにおいて,合成カテゴリーラベルノイズによる優れた耐雑音性能が得られた。
弊社のソリューションは、2023年のNational Big Data and Computing Intelligence Challengeのノイズの多いラベルで、“サブメーターのリモートセンシング画像に基づくきめ細かいオブジェクト検出”の2位を獲得した。
関連論文リスト
- Mitigating Noisy Supervision Using Synthetic Samples with Soft Labels [13.314778587751588]
ノイズラベルは、特にクラウドソーシングやWeb検索から派生した大規模データセットにおいて、現実世界のデータセットにおいてユビキタスである。
トレーニング中にノイズの多いラベルを過度に適合させる傾向にあるため、ノイズの多いデータセットでディープニューラルネットワークをトレーニングすることは難しい。
ノイズラベルの影響を軽減するために,新しい合成サンプルを用いてモデルを訓練するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-22T04:49:39Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Robust Tiny Object Detection in Aerial Images amidst Label Noise [50.257696872021164]
本研究は,ノイズラベル管理下での微小物体検出の問題に対処する。
本稿では,DN-TOD(Denoising Tiny Object Detector)を提案する。
本手法は,1段と2段の両方のオブジェクト検出パイプラインにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-01-16T02:14:33Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
Meta-learnerは、利用可能なサンプルがわずかしかないため、過度に適合する傾向がある。
ノイズの多いラベルでデータを扱う場合、メタラーナーはラベルノイズに対して非常に敏感になる可能性がある。
本稿では,タスク固有のパラメータの主要な方向でメタパラメータを更新するEigen-Reptile(ER)を提案する。
論文 参考訳(メタデータ) (2022-06-04T08:48:02Z) - Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis [69.48582264712854]
本研究では,頑健な視覚的感情分析を行うための頑健な学習手法を提案する。
本手法は,トレーニング中にノイズラベルを集約・フィルタリングするために外部メモリに依存している。
公開データセットを用いたラベルノイズを用いた視覚的感情分析のベンチマークを構築した。
論文 参考訳(メタデータ) (2021-09-15T18:18:28Z) - Learning from Noisy Labels via Dynamic Loss Thresholding [69.61904305229446]
我々はDLT(Dynamic Loss Thresholding)という新しい手法を提案する。
トレーニングプロセス中、DLTは各サンプルの損失値を記録し、動的損失閾値を算出する。
CIFAR-10/100 と Clothing1M の実験は、最近の最先端手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2021-04-01T07:59:03Z) - SWIPENET: Object detection in noisy underwater images [41.35601054297707]
本稿では,この2つの問題に対処するために,Sample-WeIghted hyPEr Network(SWIPENET)とCurriculum Multi-Class Adaboost(CMA)という堅牢なトレーニングパラダイムを提案する。
SWIPENETのバックボーンは、複数の高解像度かつセマンティックリッチなハイパーフィーチャーマップを生成し、小さなオブジェクト検出を大幅に改善する。
簡単な概念から難しい概念まで学習を促進する人間の教育プロセスに着想を得て,まず騒音の影響を受けないクリーンな検出器を訓練するCMA訓練パラダイムを提案する。
論文 参考訳(メタデータ) (2020-10-19T16:41:20Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
小さくて散らばった物体は実世界では一般的であり、検出は困難である。
本稿では,まず,物体検出にデノナイズするアイデアを革新的に紹介する。
機能マップ上のインスタンスレベルの記述は、小さくて散らばったオブジェクトの検出を強化するために行われる。
論文 参考訳(メタデータ) (2020-04-28T06:03:54Z) - Solving Missing-Annotation Object Detection with Background
Recalibration Loss [49.42997894751021]
本稿では,新しい,かつ困難な検出シナリオに焦点を当てる。 真のオブジェクト/インスタンスの大部分は,データセットにラベル付けされていない。
従来, ソフトサンプリングを用いて, 正の例と重なり合うRoIsの勾配を再重み付けする手法が提案されてきた。
本稿では、予め定義されたIoU閾値と入力画像に基づいて損失信号を自動的に校正できる、バックグラウンド校正損失(BRL)と呼ばれる優れた解を提案する。
論文 参考訳(メタデータ) (2020-02-12T23:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。