論文の概要: AMSNet: Netlist Dataset for AMS Circuits
- arxiv url: http://arxiv.org/abs/2405.09045v1
- Date: Wed, 15 May 2024 02:46:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:35:45.974188
- Title: AMSNet: Netlist Dataset for AMS Circuits
- Title(参考訳): AMSNet: AMS回路のネットリストデータセット
- Authors: Zhuofu Tao, Yichen Shi, Yiru Huo, Rui Ye, Zonghang Li, Li Huang, Chen Wu, Na Bai, Zhiping Yu, Ting-Jung Lin, Lei He,
- Abstract要約: 我々は、スキーマをネットリストに変換する自動手法を開発し、データセットAMSNetを作成する。
サイズが大きくなるにつれて、AMSNetはAMS回路設計におけるMLLMアプリケーションの探索を著しく容易にする。
- 参考スコア(独自算出の注目度): 8.601352527168821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today's analog/mixed-signal (AMS) integrated circuit (IC) designs demand substantial manual intervention. The advent of multimodal large language models (MLLMs) has unveiled significant potential across various fields, suggesting their applicability in streamlining large-scale AMS IC design as well. A bottleneck in employing MLLMs for automatic AMS circuit generation is the absence of a comprehensive dataset delineating the schematic-netlist relationship. We therefore design an automatic technique for converting schematics into netlists, and create dataset AMSNet, encompassing transistor-level schematics and corresponding SPICE format netlists. With a growing size, AMSNet can significantly facilitate exploration of MLLM applications in AMS circuit design. We have made an initial set of netlists public, and will make both our netlist generation tool and the full dataset available upon publishing of this paper.
- Abstract(参考訳): 今日のアナログ/混合信号(AMS)集積回路(IC)の設計は、かなりの手作業による介入を必要とする。
MLLM(Multimodal large language model)の出現は、様々な分野において大きな可能性を秘めており、大規模なAMS IC設計の合理化にも応用可能であることを示唆している。
AMS回路の自動生成にMLLMを使うことのボトルネックは、スキーマとネットリストの関係を記述した包括的なデータセットがないことである。
そこで我々は、スキーマをネットリストに変換する自動手法を設計し、トランジスタレベルのスキーマと対応するSPICEフォーマットネットリストを含むデータセットAMSNetを作成する。
サイズが大きくなるにつれて、AMSNetはAMS回路設計におけるMLLMアプリケーションの探索を著しく容易にする。
我々は、ネットリストの最初のセットを公開し、この論文の公開時に、ネットリスト生成ツールと完全なデータセットの両方を利用可能にします。
関連論文リスト
- Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - EasyACIM: An End-to-End Automated Analog CIM with Synthesizable Architecture and Agile Design Space Exploration [4.31899314328104]
本研究は、合成可能なアーキテクチャ(EasyACIM)に基づくエンドツーエンド自動ACIMを提案する。
EasyACIMは、様々な設計仕様でACIMのレイアウトを自動的に生成できる。
EasyACIMが提供するACIMソリューションは、最先端(SOTA)ACIMと比較して、幅広い設計空間と競争性能を有する。
論文 参考訳(メタデータ) (2024-04-12T08:12:17Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
大規模言語モデル(LLM)は、文脈理解、論理推論、回答生成においてその能力を実証している。
本稿では,EDA分野におけるLLMの応用に関する系統的研究を行う。
論理合成,物理設計,マルチモーダル特徴抽出,回路のアライメントにLLMを適用することに焦点を当て,今後の研究の方向性を強調した。
論文 参考訳(メタデータ) (2023-12-28T15:09:14Z) - EDALearn: A Comprehensive RTL-to-Signoff EDA Benchmark for Democratized
and Reproducible ML for EDA Research [5.093676641214663]
我々はEDALearnを紹介した。EDALearnは、EDAの機械学習タスクに特化した、最初の包括的なオープンソースベンチマークスイートである。
このベンチマークスイートは、合成から物理実装までのエンドツーエンドのフローを示し、さまざまなステージにわたるデータ収集を強化する。
私たちの貢献はML-EDAドメインのさらなる進歩を促進することを目的としています。
論文 参考訳(メタデータ) (2023-12-04T06:51:46Z) - Deep Learning Assisted Multiuser MIMO Load Modulated Systems for
Enhanced Downlink mmWave Communications [68.96633803796003]
本稿では, マルチユーザ負荷変調アレイ (MU-LMA) に着目し, マイクロウェーブ (mmWave) マルチインプット・マルチアウトプット (MIMO) システムにおいて, マルチユーザ負荷変調アレイ (MU-LMA) の小型化とコスト削減を図っている。
ダウンリンクMU-LMAの既存のプリコーディングアルゴリズムは、自由度と複雑なシステム構成の低下に悩まされるサブアレイ構造化(SAS)送信機に依存している。
本稿では,FAS (Full-array Structured) 送信機を用いたMU-LMAシステムを提案し,それに応じて2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-08T08:54:56Z) - Large AI Model Empowered Multimodal Semantic Communications [48.73159237649128]
本稿では,Large AI Model-based Multimodal SC (LAMMSC) フレームワークを提案する。
まず、条件付きマルチモーダルアライメント(MMA)を提案し、マルチモーダルデータと非モーダルデータ間の変換を可能にする。
次に、パーソナライズされたLLMベースの知識ベース(LKB)を提案し、ユーザがパーソナライズされたセマンティック抽出やリカバリを行うことができる。
最後に,CGE(Generative Adversarial Network-based Channel Estimation)を用いて,無線チャネルの状態情報を推定する。
論文 参考訳(メタデータ) (2023-09-03T19:24:34Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Analog/Mixed-Signal Circuit Synthesis Enabled by the Advancements of
Circuit Architectures and Machine Learning Algorithms [0.0]
我々は、ニューラルネットワークに基づくサロゲートモデルを用いて、回路設計パラメータの探索とレイアウトの反復を高速化する。
最後に、AMS回路のいくつかの例を、仕様からシリコンプロトタイプまで迅速に合成し、人間の介入を大幅に削減する。
論文 参考訳(メタデータ) (2021-12-15T01:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。