論文の概要: Perception Without Vision for Trajectory Prediction: Ego Vehicle Dynamics as Scene Representation for Efficient Active Learning in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2405.09049v2
- Date: Mon, 20 May 2024 10:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 20:06:02.614056
- Title: Perception Without Vision for Trajectory Prediction: Ego Vehicle Dynamics as Scene Representation for Efficient Active Learning in Autonomous Driving
- Title(参考訳): 軌跡予測のための視覚のない知覚:自律運転における効果的な能動学習のためのシーン表現としてのエゴ車両ダイナミクス
- Authors: Ross Greer, Mohan Trivedi,
- Abstract要約: 本研究では,アクティブラーニングフレームワークにおける軌道状態とサンプリング戦略のクラスタリング手法を提案する。
トラジェクティブ・ステートインフォームド・アクティブ・ラーニングを統合することで、より効率的で堅牢な自動運転システムが実現可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the use of trajectory and dynamic state information for efficient data curation in autonomous driving machine learning tasks. We propose methods for clustering trajectory-states and sampling strategies in an active learning framework, aiming to reduce annotation and data costs while maintaining model performance. Our approach leverages trajectory information to guide data selection, promoting diversity in the training data. We demonstrate the effectiveness of our methods on the trajectory prediction task using the nuScenes dataset, showing consistent performance gains over random sampling across different data pool sizes, and even reaching sub-baseline displacement errors at just 50% of the data cost. Our results suggest that sampling typical data initially helps overcome the ''cold start problem,'' while introducing novelty becomes more beneficial as the training pool size increases. By integrating trajectory-state-informed active learning, we demonstrate that more efficient and robust autonomous driving systems are possible and practical using low-cost data curation strategies.
- Abstract(参考訳): 本研究では、自律走行機械学習タスクにおける効率的なデータキュレーションのための軌道情報と動的状態情報の利用について検討する。
モデル性能を維持しつつアノテーションやデータコストを削減することを目的とした,アクティブラーニングフレームワークにおける軌道状態とサンプリング戦略のクラスタリング手法を提案する。
提案手法は軌道情報を利用してデータ選択をガイドし,トレーニングデータの多様性を促進する。
本研究では,nuScenesデータセットを用いたトラジェクティブ予測タスクにおける提案手法の有効性を実証し,異なるデータプールサイズでのランダムサンプリングよりも一貫した性能向上を示すとともに,データコストの50%のサブベースライン変位誤差にまで達することを示した。
以上の結果から,トレーニングプールの規模が大きくなるにつれて,初歩的なデータサンプリングが「コールドスタート問題」の克服に役立ちながら,新規性の導入がより有益であることが示唆された。
トラジェクティブ・ステート・インフォームド・アクティブ・ラーニングを統合することで、より効率的で堅牢な自動運転システムが低コストのデータキュレーション・ストラテジーによって実現可能であることを示す。
関連論文リスト
- TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction [7.3292387742640415]
本稿では,よりリッチなトレーニングダイナミックス情報を,原型的コントラスト学習フレームワークに組み込むことを提案する。
我々は,2つの大規模自然主義データセットを用いたアプローチの実証評価を行った。
論文 参考訳(メタデータ) (2024-04-18T23:12:46Z) - The Why, When, and How to Use Active Learning in Large-Data-Driven 3D
Object Detection for Safe Autonomous Driving: An Empirical Exploration [1.2815904071470705]
エントロピークエリは、リソース制約のある環境でモデル学習を強化するデータを選択するための有望な戦略である。
この結果から,エントロピークエリは資源制約のある環境でのモデル学習を促進するデータ選択に有望な戦略であることが示唆された。
論文 参考訳(メタデータ) (2024-01-30T00:14:13Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [64.16991399882477]
我々は,データ可用性の制限の下で一般的な軌道予測表現を学習することの課題に取り組むことを目的としている。
我々はHD-mapのグラフ表現を利用し、ベクトル変換を適用して地図を再構成する。
我々は、拡張シーンに基づく軌道を生成するためにルールベースのモデルを用いる。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
バッチ(オフライン)強化学習の最近の進歩は、利用可能なオフラインデータから学習する上で有望な結果を示している。
本研究では,不確実性推定を用いて人間の実演データを注入する手法を提案する。
実験の結果,本手法は,専門家データと準最適エージェントから収集したデータを組み合わせる方法に比べて,よりサンプル効率が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-16T01:41:59Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
本研究は,対話領域における逐次移動学習における目標タスク訓練データ量の影響について検討する。
非意図的に、我々のデータでは、タスクトレーニングデータのサイズを目標とする場合、シーケンシャルトランスファーラーニングがトランスファーラーニングなしで同じモデルと比較した場合、最小限の効果が示される。
論文 参考訳(メタデータ) (2022-10-21T04:36:46Z) - Self-Supervised Human Activity Recognition with Localized Time-Frequency
Contrastive Representation Learning [16.457778420360537]
スマートフォン加速度計データを用いた人間行動認識のための自己教師付き学習ソリューションを提案する。
加速度計信号から強い表現を学習し,クラスラベルへの依存度を低減させるモデルを開発した。
提案手法の性能をMotionSense, HAPT, HHARの3つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-08-26T22:47:18Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
オフラインデータセットを使用してファクタードトランジションモデルを学習するトレーニング目標を提案する。
我々の理論的分析は、学習された潜在行動空間が下流模倣学習のサンプル効率を高めることを示唆している。
実際に潜伏行動空間を学習するために、エネルギーベースの遷移モデルを学ぶアルゴリズムTRAIL(Transition-Reparametrized Actions for Imitation Learning)を提案する。
論文 参考訳(メタデータ) (2021-10-27T21:05:00Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。