論文の概要: On the Role of Controllability in Pulse-based Quantum Machine Learning Models
- arxiv url: http://arxiv.org/abs/2405.09135v1
- Date: Wed, 15 May 2024 07:02:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:06:01.314932
- Title: On the Role of Controllability in Pulse-based Quantum Machine Learning Models
- Title(参考訳): パルスベース量子機械学習モデルにおける制御可能性の役割について
- Authors: Han-Xiao Tao, Re-Bing Wu,
- Abstract要約: トレードオフは、基礎となるパルスベースモデルの制御可能性と密接に関係していることを示す。
次元性の増大は表現性を向上するが,モデルが部分多様体上の限定的な制御性を持つ設計の場合,不規則な台地を避けることが示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pulse-based quantum machine learning (QML) models possess full expressivity when they are ensemble controllable. However, it has also been shown that barren plateaus emerge in such models, rendering training intractable for systems with large dimension. In this paper, we show that the trade-off is closely related to the controllability of the underlying pulse-based models. We first apply the Fliess-series expansion to pulse-based QML models to investigate the effect of control system structure on model expressivity, which leads to a universal criterion for assessing the expressivity of generic QML models. Guided by this criterion, we then demonstrate how designing pulse-based models on low-dimensional manifolds can balance expressivity and trainability. Finally, numerical experiments are carried out to verify the proposed criterion and our analysis, which futher demonstrate that increasing dimensionality enhances expressivity but avoids barren plateaus if the model is designed with limited controllability on a submanifold. Our approach provides a promising path for designing pulse-based QML models that are both highly expressive and trainable.
- Abstract(参考訳): パルスベース量子機械学習(QML)モデルは、アンサンブル制御可能なときに完全な表現性を持つ。
しかし、このようなモデルではバレンプラトーが出現し、大きな次元のシステムでは訓練が難しくなることが示されている。
本稿では、このトレードオフが、基礎となるパルスベースモデルの制御可能性と密接に関連していることを示す。
まず、Fliess-Series展開をパルスベースQMLモデルに適用し、制御系構造がモデル表現性に及ぼす影響を検証し、一般的なQMLモデルの表現性を評価する普遍的な基準を導出する。
この基準に導かれ、低次元多様体上のパルスベースモデルの設計が、表現性と訓練可能性のバランスをとることを実証する。
最後に, モデルがサブ多様体上で限定的な制御性で設計されている場合, 次元性の増大は表現性を高めるが, バレン高原は避けることを示す。
提案手法はパルスベースのQMLモデルの設計に有望な経路を提供する。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - CAR: Controllable Autoregressive Modeling for Visual Generation [100.33455832783416]
Controllable AutoRegressive Modeling (CAR)は、条件制御をマルチスケールの潜在変数モデリングに統合する新しいプラグイン・アンド・プレイフレームワークである。
CARは、制御表現を徐々に洗練し、キャプチャし、前訓練されたモデルの各自己回帰ステップに注入して生成プロセスを導く。
提案手法は,様々な条件にまたがって優れた制御性を示し,従来の手法に比べて画質の向上を実現している。
論文 参考訳(メタデータ) (2024-10-07T00:55:42Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in Deep Generative Models for Molecular Design [2.0701439270461184]
生成分子設計モデルでは、多数のパラメータによって生じるベイズ推定の計算上の問題により、不確実性定量化(UQ)への取り組みが減っている。
本研究では、生成分子設計の一般的なモデルであるジャンクションツリー変分オートエンコーダ(JT-VAE)に着目し、低次元の活性部分空間を利用してモデルパラメータの不確かさを捉えることでこの問題に対処する。
論文 参考訳(メタデータ) (2024-04-30T21:10:51Z) - Unleashing the Expressive Power of Pulse-Based Quantum Neural Networks [0.46085106405479537]
ノイズ中間スケール量子(NISQ)デバイスに基づく量子機械学習(QML)は、限られた量子リソースの最適利用に依存している。
ゲートベースのQMLモデルは、ソフトウェアエンジニアにとってユーザフレンドリーである。
パルスベースのモデルにより、"無限に"深い量子ニューラルネットワークを同時に構築することができる。
論文 参考訳(メタデータ) (2024-02-05T10:47:46Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
予測可能なMDP抽象化(PMA)を提案する。
元のMDPで予測モデルを訓練する代わりに、学習されたアクション空間を持つ変換MDPでモデルを訓練する。
我々はPMAを理論的に解析し、PMAが以前の教師なしモデルベースRLアプローチよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-02-08T07:37:51Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
我々は、知識に基づくニューラル常微分方程式(KNODE)というディープラーニングツールを用いて、第一原理から得られたモデルを拡張する。
得られたハイブリッドモデルは、名目上の第一原理モデルと、シミュレーションまたは実世界の実験データから学習したニューラルネットワークの両方を含む。
閉ループ性能を改善するため、ハイブリッドモデルはKNODE-MPCとして知られる新しいMPCフレームワークに統合される。
論文 参考訳(メタデータ) (2021-09-10T12:09:18Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
我々はマルコフであるGPDMを近似し、その制御理論的性質を解析する。
結果は、近似モデルのパワーを示す数値的な例で示される。
論文 参考訳(メタデータ) (2020-06-25T16:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。