A Hierarchically Feature Reconstructed Autoencoder for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2405.09148v1
- Date: Wed, 15 May 2024 07:20:27 GMT
- Title: A Hierarchically Feature Reconstructed Autoencoder for Unsupervised Anomaly Detection
- Authors: Honghui Chen, Pingping Chen, Huan Mao, Mengxi Jiang,
- Abstract summary: It consists of a well pre-trained encoder to extract hierarchical feature representations and a decoder to reconstruct these intermediate features from the encoder.
The anomalies can be detected when the decoder fails to reconstruct features well, and then errors of hierarchical feature reconstruction are aggregated into an anomaly map to achieve anomaly localization.
Experiment results show that the proposed method outperforms the state-of-the-art methods on MNIST, Fashion-MNIST, CIFAR-10, and MVTec Anomaly Detection datasets.
- Score: 8.512184778338806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection and localization without any manual annotations and prior knowledge is a challenging task under the setting of unsupervised learning. The existing works achieve excellent performance in the anomaly detection, but with complex networks or cumbersome pipelines. To address this issue, this paper explores a simple but effective architecture in the anomaly detection. It consists of a well pre-trained encoder to extract hierarchical feature representations and a decoder to reconstruct these intermediate features from the encoder. In particular, it does not require any data augmentations and anomalous images for training. The anomalies can be detected when the decoder fails to reconstruct features well, and then errors of hierarchical feature reconstruction are aggregated into an anomaly map to achieve anomaly localization. The difference comparison between those features of encoder and decode lead to more accurate and robust localization results than the comparison in single feature or pixel-by-pixel comparison in the conventional works. Experiment results show that the proposed method outperforms the state-of-the-art methods on MNIST, Fashion-MNIST, CIFAR-10, and MVTec Anomaly Detection datasets on both anomaly detection and localization.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Reconstruction Error-based Anomaly Detection with Few Outlying Examples [1.011824113969195]
This work investigates approaches to allow reconstruction error-based architectures to instruct the model to put known anomalies outside of the domain description of the normal data.
Specifically, our strategy exploits a limited number of anomalous examples to increase the contrast between the reconstruction error associated with normal examples and those associated with both known and unknown anomalies.
arXiv Detail & Related papers (2023-05-17T08:20:29Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
Anomaly detection is to identify samples that do not conform to the distribution of the normal data.
In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder.
The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.
arXiv Detail & Related papers (2022-07-03T19:32:00Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
Detection [46.76220474310698]
Weakly-supervised anomaly detection aims at learning an anomaly detector from a limited amount of labeled data and abundant unlabeled data.
Recent works build deep neural networks for anomaly detection by discriminatively mapping the normal samples and abnormal samples to different regions in the feature space or fitting different distributions.
This paper proposes a novel strategy to transform the input data into a more meaningful representation that could be used for anomaly detection.
arXiv Detail & Related papers (2021-05-22T16:23:05Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Unsupervised Two-Stage Anomaly Detection [18.045265572566276]
Anomaly detection from a single image is challenging since anomaly data is always rare and can be with highly unpredictable types.
We propose a two-stage approach, which generates high-fidelity yet anomaly-free reconstructions.
Our method outperforms state-of-the-arts on four anomaly detection datasets.
arXiv Detail & Related papers (2021-03-22T08:57:27Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.