論文の概要: StateGuard: Detecting State Derailment Defects in Decentralized Exchange Smart Contract
- arxiv url: http://arxiv.org/abs/2405.09181v1
- Date: Wed, 15 May 2024 08:40:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:56:07.885449
- Title: StateGuard: Detecting State Derailment Defects in Decentralized Exchange Smart Contract
- Title(参考訳): StateGuard: 分散交換スマートコントラクトにおける状態障害の検出
- Authors: Zongwei Li, Wenkai Li, Xiaoqi Li, Yuqing Zhang,
- Abstract要約: 我々は,DEXの脱線欠陥に関する最初の系統的研究を行った。
これらの欠陥は、契約実行中のシステム状態の不正、不完全、あるいは不正な変更につながる可能性がある。
我々は,DeXスマートコントラクトにおける状態脱線欠陥を検出するためのディープラーニングベースのフレームワークであるStateGuardを提案する。
- 参考スコア(独自算出の注目度): 4.891180928768215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized Exchanges (DEXs), leveraging blockchain technology and smart contracts, have emerged in decentralized finance. However, the DEX project with multi-contract interaction is accompanied by complex state logic, which makes it challenging to solve state defects. In this paper, we conduct the first systematic study on state derailment defects of DEXs. These defects could lead to incorrect, incomplete, or unauthorized changes to the system state during contract execution, potentially causing security threats. We propose StateGuard, a deep learning-based framework to detect state derailment defects in DEX smart contracts. StateGuard constructs an Abstract Syntax Tree (AST) of the smart contract, extracting key features to generate a graph representation. Then, it leverages a Graph Convolutional Network (GCN) to discover defects. Evaluating StateGuard on 46 DEX projects with 5,671 smart contracts reveals its effectiveness, with a precision of 92.24%. To further verify its practicality, we used StateGuard to audit real-world smart contracts and successfully authenticated multiple novel CVEs.
- Abstract(参考訳): ブロックチェーン技術とスマートコントラクトを活用する分散取引所(DEX)が、分散金融に登場した。
しかし、マルチコントラクトインタラクションを備えたDECプロジェクトは複雑な状態ロジックを伴い、状態欠陥の解決が困難になる。
本稿では,DEXの脱線欠陥に関する最初の系統的研究を行う。
これらの欠陥は、契約実行中にシステム状態の不正、不完全、あるいは不正な変更を引き起こし、セキュリティ上の脅威を引き起こす可能性がある。
我々は,DeXスマートコントラクトにおける状態脱線欠陥を検出するためのディープラーニングベースのフレームワークであるStateGuardを提案する。
StateGuardはスマートコントラクトの抽象構文木(AST)を構築し、キー機能を抽出してグラフ表現を生成する。
次に、グラフ畳み込みネットワーク(GCN)を利用して欠陥を発見する。
46のDEXプロジェクトで5,671のスマートコントラクトでStateGuardを評価することは、その有効性を92.24%の精度で示している。
その実用性をさらに検証するために、私たちはStateGuardを使用して現実世界のスマートコントラクトを監査し、複数の新しいCVEの認証に成功した。
関連論文リスト
- Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum [6.544211171664063]
本稿では、すべてのプロキシスマートコントラクトとその衝突を識別する自動クロスコントラクトアナライザであるProxionを紹介する。
Proxionを際立たせるのは、ソースコードと過去のトランザクションの両方を欠く隠れたスマートコントラクトを分析する能力だ。
2015年から2023年までの3600万以上の生存契約を分析し、54.2%がプロキシ契約であることを示した。
論文 参考訳(メタデータ) (2024-09-20T15:03:19Z) - Theorem-Carrying-Transaction: Runtime Certification to Ensure Safety for Smart Contract Transactions [8.32630869646569]
我々は、この野心的な目標に向けて、コミュニティに実行可能な技術ロードマップを提示します。
我々の技術はTheorem-Carrying-Transaction (TCT)と呼ばれ、具体的実行と記号的証明の利点を組み合わせたものです。
我々のプロトタイプは、最先端のアプローチよりも2桁低い、無視可能なランタイムオーバーヘッドを発生させます。
論文 参考訳(メタデータ) (2024-08-12T20:27:41Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
本稿では、バージョン管理されたスマートコントラクトのデータセットを収集する最初のスマートコントラクト収集ツールであるEthstractorを提案する。
収集されたデータセットは、スマートコントラクトの脆弱性の指標として、コードメトリクスの信頼性を評価するために使用される。
論文 参考訳(メタデータ) (2024-07-22T18:27:29Z) - SmartState: Detecting State-Reverting Vulnerabilities in Smart Contracts via Fine-Grained State-Dependency Analysis [25.364505252702028]
SRV(State-Reverting Vulnerability)は、違法な利益獲得やDoS(Deny-of-Service)といったセキュリティ上の影響をもたらす可能性がある。
本稿では,Solidityスマートコントラクトにおける状態反転脆弱性を検出するための新しいフレームワークであるSmartStateを提案する。
さらにSmartStateは、47,351の現実世界のスマートコントラクトから406の新しいSRVを正常に識別する。
論文 参考訳(メタデータ) (2024-06-23T02:51:23Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - Performance-lossless Black-box Model Watermarking [69.22653003059031]
本稿では,モデル知的財産権を保護するために,ブランチバックドアベースのモデル透かしプロトコルを提案する。
さらに,プロトコルに対する潜在的な脅威を分析し,言語モデルに対するセキュアで実現可能な透かしインスタンスを提供する。
論文 参考訳(メタデータ) (2023-12-11T16:14:04Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
われわれは、Solidityの最新バージョンで書かれた現実世界のスマートコントラクトを正式に検証できるツールを検索する。
本稿では,最近のSolidityで書かれた実世界のスマートコントラクトを正式に検証できるツールについて紹介する。
論文 参考訳(メタデータ) (2023-07-05T14:30:21Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Graph Neural Networks Enhanced Smart Contract Vulnerability Detection of
Educational Blockchain [4.239144309557045]
本稿では,教育ブロックチェーンにおけるスマートコントラクトに対するグラフニューラルネットワークによる脆弱性検出を提案する。
実験の結果,提案手法はスマートコントラクトの脆弱性検出に有効であることがわかった。
論文 参考訳(メタデータ) (2023-03-08T09:58:58Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。