論文の概要: TimeX++: Learning Time-Series Explanations with Information Bottleneck
- arxiv url: http://arxiv.org/abs/2405.09308v1
- Date: Wed, 15 May 2024 13:03:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:26:38.689801
- Title: TimeX++: Learning Time-Series Explanations with Information Bottleneck
- Title(参考訳): TimeX++:Information Bottleneckで時系列説明を学習する
- Authors: Zichuan Liu, Tianchun Wang, Jimeng Shi, Xu Zheng, Zhuomin Chen, Lei Song, Wenqian Dong, Jayantha Obeysekera, Farhad Shirani, Dongsheng Luo,
- Abstract要約: 本稿では,時系列説明可能な学習のための簡易かつ実用的な目的関数を提案する。
目的関数の設計は情報ボトルネックの原理に基づいている。
また、新しい説明フレームワークであるTimeX++を紹介します。
- 参考スコア(独自算出の注目度): 12.913229676868646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explaining deep learning models operating on time series data is crucial in various applications of interest which require interpretable and transparent insights from time series signals. In this work, we investigate this problem from an information theoretic perspective and show that most existing measures of explainability may suffer from trivial solutions and distributional shift issues. To address these issues, we introduce a simple yet practical objective function for time series explainable learning. The design of the objective function builds upon the principle of information bottleneck (IB), and modifies the IB objective function to avoid trivial solutions and distributional shift issues. We further present TimeX++, a novel explanation framework that leverages a parametric network to produce explanation-embedded instances that are both in-distributed and label-preserving. We evaluate TimeX++ on both synthetic and real-world datasets comparing its performance against leading baselines, and validate its practical efficacy through case studies in a real-world environmental application. Quantitative and qualitative evaluations show that TimeX++ outperforms baselines across all datasets, demonstrating a substantial improvement in explanation quality for time series data. The source code is available at \url{https://github.com/zichuan-liu/TimeXplusplus}.
- Abstract(参考訳): 時系列データに基づくディープラーニングモデルを記述することは、時系列信号から解釈可能かつ透明な洞察を必要とする様々な関心の応用において不可欠である。
本研究では,情報理論の観点からこの問題を考察し,既存の説明可能性尺度のほとんどが,自明な解法や分布シフトの問題に悩まされていることを示す。
これらの課題に対処するために、時系列説明可能な学習のためのシンプルで実用的な客観的関数を導入する。
目的関数の設計は、情報ボトルネック(IB)の原理に基づいており、自明な解や分布シフトの問題を避けるために、IBの目的関数を変更する。
さらに、パラメトリックネットワークを利用した新しい説明フレームワークであるTimeX++を紹介します。
実環境アプリケーションにおけるケーススタディにより,TX++の性能を主要なベースラインと比較し,実環境と実環境の両方で評価し,その実用性を評価する。
定量的かつ定性的な評価は、TimeX++がすべてのデータセットでベースラインを上回り、時系列データの説明品質が大幅に向上したことを示している。
ソースコードは \url{https://github.com/zichuan-liu/TimeXplus} で公開されている。
関連論文リスト
- Time is Not Enough: Time-Frequency based Explanation for Time-Series Black-Box Models [12.575427166236844]
時系列ブラックボックス分類器の時間周波数説明を提供するXAIフレームワークであるSpectral eXplanation(SpectralX)を提案する。
また,新しい摂動型XAI法であるFeature Importance Approximations (FIA)を導入する。
論文 参考訳(メタデータ) (2024-08-07T08:51:10Z) - Time Series Representation Models [2.724184832774005]
時系列解析は、そのスパース特性、高次元性、一貫性のないデータ品質のため、依然として大きな課題である。
近年のトランス技術の発展により,予測や計算能力が向上している。
イントロスペクションに基づく時系列解析のための新しいアーキテクチャ概念を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:25:31Z) - Time Series Representation Learning with Supervised Contrastive Temporal Transformer [8.223940676615857]
textbf Supervised textbfCOntrastive textbfTemporal textbfTransformer (SCOTT)
まず,変化不変表現の学習を支援するために,様々な時系列データに対する適切な拡張手法について検討する。
論文 参考訳(メタデータ) (2024-03-16T03:37:19Z) - TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables [75.83318701911274]
TimeXerは外部情報を取り込み、内因性変数の予測を強化する。
TimeXerは、12の現実世界の予測ベンチマークで一貫した最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-29T11:54:35Z) - Explaining Time Series via Contrastive and Locally Sparse Perturbations [45.055327583283315]
ContraLSPは、非形式的摂動を構築するために反事実サンプルを導入するスパースモデルである。
合成と実世界の両方のデータセットに関する実証研究は、ContraLSPが最先端のモデルより優れていることを示している。
論文 参考訳(メタデータ) (2024-01-16T18:27:37Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - A Dataset for Answering Time-Sensitive Questions [88.95075983560331]
時間とは、我々の物理的世界において重要な次元である。多くの事実が時間に関して進化することができる。
時間次元を考慮し、既存のQAモデルに時間とともに推論する権限を与えることが重要です。
既存のQAデータセットには、時間に敏感な質問がほとんどないため、モデルの時間的推論能力の診断やベンチマークには適さない。
論文 参考訳(メタデータ) (2021-08-13T16:42:25Z) - Temporal Dependencies in Feature Importance for Time Series Predictions [4.082348823209183]
時系列予測設定における特徴重要度を評価するためのフレームワークであるWinITを提案する。
我々は、ソリューションが時間ステップ内の機能の適切な属性をどのように改善するかを示す。
WinIT は FIT の2.47倍の性能を達成しており、実際のMIMIC の致命的課題における他の特徴的重要な手法である。
論文 参考訳(メタデータ) (2021-07-29T20:31:03Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。