論文の概要: Learning Coarse-Grained Dynamics on Graph
- arxiv url: http://arxiv.org/abs/2405.09324v1
- Date: Wed, 15 May 2024 13:25:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:26:38.671875
- Title: Learning Coarse-Grained Dynamics on Graph
- Title(参考訳): グラフを用いた粗粒度ダイナミクスの学習
- Authors: Yin Yu, John Harlim, Daning Huang, Yan Li,
- Abstract要約: グラフ上の粗粒度動的システムを特定するために,グラフニューラルネットワーク(GNN)非マルコフモデリングフレームワークを検討する。
本研究の主目的は, グラフトポロジを符号化する粗粒度相互作用係数に, モリ・ズワンチのメモリ項の先頭項がどのように依存するかを検査することによって, GNNアーキテクチャを体系的に決定することである。
- 参考スコア(独自算出の注目度): 4.692217705215042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a Graph Neural Network (GNN) non-Markovian modeling framework to identify coarse-grained dynamical systems on graphs. Our main idea is to systematically determine the GNN architecture by inspecting how the leading term of the Mori-Zwanzig memory term depends on the coarse-grained interaction coefficients that encode the graph topology. Based on this analysis, we found that the appropriate GNN architecture that will account for $K$-hop dynamical interactions has to employ a Message Passing (MP) mechanism with at least $2K$ steps. We also deduce that the memory length required for an accurate closure model decreases as a function of the interaction strength under the assumption that the interaction strength exhibits a power law that decays as a function of the hop distance. Supporting numerical demonstrations on two examples, a heterogeneous Kuramoto oscillator model and a power system, suggest that the proposed GNN architecture can predict the coarse-grained dynamics under fixed and time-varying graph topologies.
- Abstract(参考訳): グラフ上の粗粒度動的システムを特定するために,グラフニューラルネットワーク(GNN)非マルコフモデリングフレームワークを検討する。
本研究の主目的は, グラフトポロジを符号化する粗粒度相互作用係数に, モリ・ズワンチのメモリ項の先頭項がどのように依存するかを検査することによって, GNNアーキテクチャを体系的に決定することである。
この分析から、$K$-hopの動的相互作用を考慮に入れた適切なGNNアーキテクチャは、少なくとも2K$ステップのメッセージパッシング(MP)機構を使わなければならないことがわかった。
また, 相互作用強度がホップ距離の関数として減衰するパワー則を示すという仮定の下で, 相互作用強度の関数として, 正確な閉包モデルに必要なメモリ長が減少することを示した。
不均一な倉本発振器モデルと電力系統の2つの例に対する数値的な実証を支援することで,GNNアーキテクチャは,固定および時間変化グラフトポロジーの下での粗粒度ダイナミクスを予測可能であることを示唆している。
関連論文リスト
- Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation [55.227976642410766]
グラフ内の情報拡散のダイナミクスは、グラフ表現学習に大きな影響を及ぼす重要なオープン問題である。
そこで我々は(ポート-)Hamiltonian Deep Graph Networksを紹介した。
我々は,非散逸的長距離伝播と非保守的行動の両方を,単一の理論的・実践的な枠組みで調整する。
論文 参考訳(メタデータ) (2024-05-27T13:36:50Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
グラフニューラルネットワーク(GNN)は、ソーシャルネットワークや生体システムのようなドメインで広く使われている。
GNNのローカリティ仮定は、グラフ内の長距離依存関係とグローバルパターンをキャプチャする能力を損なう。
本稿では,ブラヒクロニスト問題から着想を得た変分解析に基づく新しい帰納バイアスを提案する。
論文 参考訳(メタデータ) (2023-07-01T04:44:43Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - On the Ability of Graph Neural Networks to Model Interactions Between
Vertices [14.909298522361306]
グラフニューラルネットワーク(GNN)は、グラフの頂点として表されるエンティティ間の複雑な相互作用をモデル化するために広く使われている。
近年のGNNの表現力を理論的に分析する試みにもかかわらず、相互作用をモデル化する能力の形式的特徴は欠如している。
論文 参考訳(メタデータ) (2022-11-29T18:58:07Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Continuous-Depth Neural Models for Dynamic Graph Prediction [16.89981677708299]
連続深度グラフニューラルネットワーク(GNN)の枠組みを紹介する。
ニューラルグラフ微分方程式(ニューラルグラフ微分方程式)は、GNNに対抗して形式化される。
その結果、遺伝的制御ネットワークにおけるトラフィック予測や予測など、アプリケーション全体にわたって提案されたモデルの有効性が証明された。
論文 参考訳(メタデータ) (2021-06-22T07:30:35Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。