Fourier Boundary Features Network with Wider Catchers for Glass Segmentation
- URL: http://arxiv.org/abs/2405.09459v1
- Date: Wed, 15 May 2024 15:52:27 GMT
- Title: Fourier Boundary Features Network with Wider Catchers for Glass Segmentation
- Authors: Xiaolin Qin, Jiacen Liu, Qianlei Wang, Shaolin Zhang, Fei Zhu, Zhang Yi,
- Abstract summary: We propose a new method for constraining the segmentation of reflection surface and penetrating glass.
The proposed method yields better segmentation performance compared with the state-of-the-art (SOTA) methods in glass image segmentation.
- Score: 12.465008923418406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glass largely blurs the boundary between the real world and the reflection. The special transmittance and reflectance quality have confused the semantic tasks related to machine vision. Therefore, how to clear the boundary built by glass, and avoid over-capturing features as false positive information in deep structure, matters for constraining the segmentation of reflection surface and penetrating glass. We proposed the Fourier Boundary Features Network with Wider Catchers (FBWC), which might be the first attempt to utilize sufficiently wide horizontal shallow branches without vertical deepening for guiding the fine granularity segmentation boundary through primary glass semantic information. Specifically, we designed the Wider Coarse-Catchers (WCC) for anchoring large area segmentation and reducing excessive extraction from a structural perspective. We embed fine-grained features by Cross Transpose Attention (CTA), which is introduced to avoid the incomplete area within the boundary caused by reflection noise. For excavating glass features and balancing high-low layers context, a learnable Fourier Convolution Controller (FCC) is proposed to regulate information integration robustly. The proposed method has been validated on three different public glass segmentation datasets. Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art (SOTA) methods in glass image segmentation.
Related papers
- LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
This paper introduces a framework that explores amodal segmentation for robotic grasping in cluttered scenes.
We propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net)
The results on different datasets show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-08-06T14:50:48Z) - Glass Segmentation with Multi Scales and Primary Prediction Guiding [2.66512000865131]
Glass-like objects can be seen everywhere in our daily life which are hard for existing methods to segment them.
We propose MGNet, which consists of a FineRescaling and Merging module (FRM) to improve the ability to extract semantics.
We supervise the model with a novel loss function with the uncertainty-aware loss to produce high-confidence segmentation maps.
arXiv Detail & Related papers (2024-02-13T16:14:32Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
We propose a simple yet effective deepfake detector called LSDA.
It is based on a idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary.
We show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
arXiv Detail & Related papers (2023-11-19T09:41:10Z) - RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation [44.45402982171703]
We introduce a Reciprocal Feature Evolution Network (RFENet) for effective glass-like object segmentation.
RFENet achieves state-of-the-art performance on three popular public datasets.
arXiv Detail & Related papers (2023-07-12T11:45:22Z) - Edge-Aware Mirror Network for Camouflaged Object Detection [5.032585246295627]
We propose a novel Edge-aware Mirror Network (EAMNet) to model edge detection and camouflaged object segmentation.
EAMNet has a two-branch architecture, where a segmentation-induced edge aggregation module and an edge-induced integrity aggregation module are designed to cross-guide the segmentation branch and edge detection branch.
Experiment results show that EAMNet outperforms existing cutting-edge baselines on three widely used COD datasets.
arXiv Detail & Related papers (2023-07-08T08:14:49Z) - Temporal Perceiver: A General Architecture for Arbitrary Boundary
Detection [48.33132632418303]
Generic Boundary Detection (GBD) aims at locating general boundaries that divide videos into semantically coherent and taxonomy-free units.
Previous research separately handle these different-level generic boundaries with specific designs of complicated deep networks from simple CNN to LSTM.
We present Temporal Perceiver, a general architecture with Transformers, offering a unified solution to the detection of arbitrary generic boundaries.
arXiv Detail & Related papers (2022-03-01T09:31:30Z) - GlassNet: Label Decoupling-based Three-stream Neural Network for Robust
Image Glass Detection [1.1825946875790057]
We exploit label decoupling to decompose the labeled ground-truth (GT) map into an interior-diffusion map and a boundary-diffusion map.
The GT map in collaboration with the two newly generated maps breaks the imbalanced distribution of the object boundary, leading to improved glass detection quality.
We develop an attention-based boundary-aware feature Mosaic module to integrate multi-modal information.
arXiv Detail & Related papers (2021-08-25T08:33:49Z) - BEFD: Boundary Enhancement and Feature Denoising for Vessel Segmentation [15.386077363312372]
We propose Boundary Enhancement and Feature Denoising (BEFD) module to facilitate the network ability of extracting boundary information in semantic segmentation.
By introducing Sobel edge detector, the network is able to acquire additional edge prior, thus enhancing boundary in an unsupervised manner for medical image segmentation.
arXiv Detail & Related papers (2021-04-08T13:44:47Z) - Enhanced Boundary Learning for Glass-like Object Segmentation [55.45473926510806]
This paper aims to solve the glass-like object segmentation problem via enhanced boundary learning.
In particular, we first propose a novel refined differential module for generating finer boundary cues.
An edge-aware point-based graph convolution network module is proposed to model the global shape representation along the boundary.
arXiv Detail & Related papers (2021-03-29T16:18:57Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
arXiv Detail & Related papers (2020-03-28T18:51:43Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.