Flashback: Enhancing Proposer-Builder Design with Future-Block Auctions in Proof-of-Stake Ethereum
- URL: http://arxiv.org/abs/2405.09465v1
- Date: Wed, 15 May 2024 15:58:21 GMT
- Title: Flashback: Enhancing Proposer-Builder Design with Future-Block Auctions in Proof-of-Stake Ethereum
- Authors: Yifan Mao, Mengya Zhang, Shaileshh Bojja Venkatakrishnan, Zhiqiang Lin,
- Abstract summary: Auction mechanisms used between searchers, builders and proposers are crucial to the overall health of the blockchain.
In this paper, we consider PBS design in as a game between searchers, builders and proposers.
A key novelty in our design is the inclusion of future block proposers, as all proposers of an epoch are decided ahead of time in proof-of-stake (PoS)
Our analysis shows the existence of alternative auction mechanisms that result in a better equilibrium to players compared to state-of-the-art.
- Score: 27.386337024680245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maximal extractable value (MEV) in which block proposers unethically gain profits by manipulating the order in which transactions are included within a block, is a key challenge facing blockchains such as Ethereum today. Left unchecked, MEV can lead to a centralization of stake distribution thereby ultimately compromising the security of blockchain consensus. To preserve proposer decentralization (and hence security) of the blockchain, Ethereum has advocated for a proposer-builder separation (PBS) in which the functionality of transaction ordering is separated from proposers and assigned to separate entities called builders. Builders accept transaction bundles from searchers, who compete to find the most profitable bundles. Builders then bid completed blocks to proposers, who accept the most profitable blocks for publication. The auction mechanisms used between searchers, builders and proposers are crucial to the overall health of the blockchain. In this paper, we consider PBS design in Ethereum as a game between searchers, builders and proposers. A key novelty in our design is the inclusion of future block proposers, as all proposers of an epoch are decided ahead of time in proof-of-stake (PoS) Ethereum within the game model. Our analysis shows the existence of alternative auction mechanisms that result in a better (more profitable) equilibrium to players compared to state-of-the-art. Experimental evaluations based on synthetic and real-world data traces corroborate the analysis. Our results highlight that a rethinking of auction mechanism designs is necessary in PoS Ethereum to prevent disruption.
Related papers
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - Breaking the Balance of Power: Commitment Attacks on Ethereum's Reward Mechanism [4.524180577541776]
We show a series of commitment attacks on LMD GHOST, a core part of the consensus mechanism.
These attacks disrupt the intended balance of power between proposers and voters.
We introduce a novel reward mechanism that restores the voters' role as a check against proposer power.
arXiv Detail & Related papers (2024-07-28T12:17:17Z) - Who Wins Ethereum Block Building Auctions and Why? [2.762397703396294]
The MEV-Boost block auction contributes approximately 90% of all blocks.
Between October 2023 and March 2024, only three builders produced 80% of them.
We identify features that play a significant role in builders' ability to win blocks and earn profits.
arXiv Detail & Related papers (2024-07-18T22:49:37Z) - MEV Ecosystem Evolution From Ethereum 1.0 [6.151915040556504]
In traditional finance, there are possibilities to create values, e.g., arbitrage offers to create value from market inefficiencies or front-running offers to extract value for the participants having privileged roles.
Such opportunities are readily available in DeFi ecosystems, where diverse participants engage in financial activities.
In this survey, first, we show how lucrative such opportunities can be. Then, we discuss how protocolfollowing participants trying to capture such opportunities threaten to sabotage blockchain's performance.
Finally, we review the current state of research trying to restore trustlessness and decentralization to provide all DeFi participants with a fair marketplace
arXiv Detail & Related papers (2024-06-19T14:22:26Z) - Remeasuring the Arbitrage and Sandwich Attacks of Maximal Extractable Value in Ethereum [7.381773144616746]
Maximal Extractable Value (MEV) drives the prosperity of the blockchain ecosystem.
We propose a profitability identification algorithm to identify MEV activities on our collected largest-ever dataset.
We have characterized the overall landscape of the MEV ecosystem, the impact the private transaction architectures bring in, and the adoption of back-running mechanisms.
arXiv Detail & Related papers (2024-05-28T08:17:15Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - BlockChain I/O: Enabling Cross-Chain Commerce [2.391161450948918]
We present BlockChain I/O, a framework for cross-chain commerce.
We show how to use BlockChain I/O to implement a cross-chain marketplace.
We also discuss how its desirable properties continue to hold in the end-to-end system.
arXiv Detail & Related papers (2023-08-04T06:51:50Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.