論文の概要: Generalization Bounds for Causal Regression: Insights, Guarantees and Sensitivity Analysis
- arxiv url: http://arxiv.org/abs/2405.09516v1
- Date: Wed, 15 May 2024 17:17:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 12:46:34.998513
- Title: Generalization Bounds for Causal Regression: Insights, Guarantees and Sensitivity Analysis
- Title(参考訳): 因果回帰のための一般化境界:洞察、保証および感度分析
- Authors: Daniel Csillag, Claudio José Struchiner, Guilherme Tegoni Goedert,
- Abstract要約: このような保証を提供する一般化境界に基づく理論を提案する。
新たな測定の不等式の変化を導入することで、モデル損失を厳格に拘束することが可能になります。
半合成データと実データの境界を実証し、その顕著な厳密さと実用性を示す。
- 参考スコア(独自算出の注目度): 0.66567375919026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many algorithms have been recently proposed for causal machine learning. Yet, there is little to no theory on their quality, especially considering finite samples. In this work, we propose a theory based on generalization bounds that provides such guarantees. By introducing a novel change-of-measure inequality, we are able to tightly bound the model loss in terms of the deviation of the treatment propensities over the population, which we show can be empirically limited. Our theory is fully rigorous and holds even in the face of hidden confounding and violations of positivity. We demonstrate our bounds on semi-synthetic and real data, showcasing their remarkable tightness and practical utility.
- Abstract(参考訳): 因果機械学習には,最近多くのアルゴリズムが提案されている。
しかし、その性質について、特に有限標本を考えると、ほとんど、あるいは全く理論が存在しない。
本研究では,そのような保証を提供する一般化境界に基づく理論を提案する。
新たな尺度の不等式の変化を導入することで、人口に対する治療効果の偏りの観点から、モデル損失を厳密に拘束することが可能となり、実証的に制限されることが示される。
我々の理論は完全に厳格で、隠れた確執や肯定的な違反に直面してさえ成り立っている。
半合成データと実データの境界を実証し、その顕著な厳密さと実用性を示す。
関連論文リスト
- Uncertainty Regularized Evidential Regression [5.874234972285304]
Evidential Regression Network (ERN)は、深層学習とDempster-Shaferの理論を統合する新しいアプローチである。
特定のアクティベーション関数は非負の値を強制するために使わなければならない。
本稿では,この限界を理論的に解析し,克服するための改善を提案する。
論文 参考訳(メタデータ) (2024-01-03T01:18:18Z) - Robust Distributed Learning: Tight Error Bounds and Breakdown Point
under Data Heterogeneity [11.2120847961379]
本稿では,より現実的な不均一性モデル,すなわち(G,B)-段階的な相似性について考察し,既存の理論よりも学習問題を扱えることを示す。
また、分散学習アルゴリズムの学習誤差に新たな低い境界があることも証明する。
論文 参考訳(メタデータ) (2023-09-24T09:29:28Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - On the Importance of Gradient Norm in PAC-Bayesian Bounds [92.82627080794491]
対数ソボレフ不等式の縮約性を利用する新しい一般化法を提案する。
我々は、この新たな損失段階的ノルム項が異なるニューラルネットワークに与える影響を実証的に分析する。
論文 参考訳(メタデータ) (2022-10-12T12:49:20Z) - Functional Generalized Empirical Likelihood Estimation for Conditional
Moment Restrictions [19.39005034948997]
一般化経験的可能性(GEL)に基づく新しい推定法を提案する。
GELはより一般的なフレームワークを提供しており、GMMベースの推定器と比較して、より好ましい小さなサンプル特性を享受していることが示されている。
本研究では,2つの条件付きモーメント制約問題に対して,最先端の実証性能を実現するための,カーネルとニューラルネットワークによる推定器の実装を提案する。
論文 参考訳(メタデータ) (2022-07-11T11:02:52Z) - The Causal Marginal Polytope for Bounding Treatment Effects [9.196779204457059]
グローバル因果モデルを構築することなく因果関係を同定する手法を提案する。
我々は,グローバル因果モデルを構築することなく,因果モデルの限界とデータとの整合性を強制する。
我々はこの局所的に一貫した辺縁の集合を、因果的辺縁ポリトープと呼ぶ。
論文 参考訳(メタデータ) (2022-02-28T15:08:22Z) - Can convolutional ResNets approximately preserve input distances? A
frequency analysis perspective [31.897568775099558]
正規化スキームとbi-Lipschitznessの理論的関係は、実際には成り立たない条件下でのみ有効であることを示す。
距離保存条件に対する逆例を探索する簡単な構成的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-04T13:12:42Z) - Constrained Learning with Non-Convex Losses [119.8736858597118]
学習は現代の情報処理の中核技術になっているが、バイアス、安全でない、偏見のあるソリューションにつながるという証拠はたくさんある。
論文 参考訳(メタデータ) (2021-03-08T23:10:33Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
多くの機械学習アプリケーションは、2つの競合する目標を達成する表現を学習する。
ミニマックスゲーム理論の定式化は、精度と不変性の基本的なトレードオフを表す。
分類と回帰の双方において,この一般的かつ重要な問題を情報論的に解析する。
論文 参考訳(メタデータ) (2020-12-19T15:24:04Z) - The Variational Method of Moments [65.91730154730905]
条件モーメント問題は、観測可能量の観点から構造因果パラメータを記述するための強力な定式化である。
OWGMMの変動最小値再構成により、条件モーメント問題に対する非常に一般的な推定器のクラスを定義する。
同じ種類の変分変換に基づく統計的推測のためのアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-12-17T07:21:06Z) - Relative Deviation Margin Bounds [55.22251993239944]
我々はRademacher複雑性の観点から、分布依存と一般家庭に有効な2種類の学習境界を与える。
有限モーメントの仮定の下で、非有界な損失関数に対する分布依存的一般化境界を導出する。
論文 参考訳(メタデータ) (2020-06-26T12:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。