Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection
- URL: http://arxiv.org/abs/2405.09563v1
- Date: Mon, 6 May 2024 14:47:48 GMT
- Title: Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection
- Authors: Pooja Prajod, Bhargavi Mahesh, Elisabeth André,
- Abstract summary: This study explores the generalizability of machine learning models trained on HRV features for binary stress detection.
Our findings reveal a crucial factor affecting model generalizability: stressor type.
We recommend matching the stressor type when deploying HRV-based stress models in new environments.
- Score: 5.304745246313982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic stress detection using heart rate variability (HRV) features has gained significant traction as it utilizes unobtrusive wearable sensors measuring signals like electrocardiogram (ECG) or blood volume pulse (BVP). However, detecting stress through such physiological signals presents a considerable challenge owing to the variations in recorded signals influenced by factors, such as perceived stress intensity and measurement devices. Consequently, stress detection models developed on one dataset may perform poorly on unseen data collected under different conditions. To address this challenge, this study explores the generalizability of machine learning models trained on HRV features for binary stress detection. Our goal extends beyond evaluating generalization performance; we aim to identify the characteristics of datasets that have the most significant influence on generalizability. We leverage four publicly available stress datasets (WESAD, SWELL-KW, ForDigitStress, VerBIO) that vary in at least one of the characteristics such as stress elicitation techniques, stress intensity, and sensor devices. Employing a cross-dataset evaluation approach, we explore which of these characteristics strongly influence model generalizability. Our findings reveal a crucial factor affecting model generalizability: stressor type. Models achieved good performance across datasets when the type of stressor (e.g., social stress in our case) remains consistent. Factors like stress intensity or brand of the measurement device had minimal impact on cross-dataset performance. Based on our findings, we recommend matching the stressor type when deploying HRV-based stress models in new environments. To the best of our knowledge, this is the first study to systematically investigate factors influencing the cross-dataset applicability of HRV-based stress models.
Related papers
- Stress Assessment with Convolutional Neural Network Using PPG Signals [0.22499166814992436]
This research is focused on developing a novel technique to assess stressful events using raw PPG signals recorded by Empatica E4 sensor.
An adaptive convolutional neural network (CNN) combined with Multilayer Perceptron (MLP) has been utilized to realize the detection of stressful events.
This research will use a dataset that is publicly available and named wearable stress and effect detection (WESAD)
arXiv Detail & Related papers (2024-10-16T06:24:16Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
arXiv Detail & Related papers (2024-01-23T16:49:54Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Understanding Robust Overfitting from the Feature Generalization Perspective [61.770805867606796]
Adversarial training (AT) constructs robust neural networks by incorporating adversarial perturbations into natural data.
It is plagued by the issue of robust overfitting (RO), which severely damages the model's robustness.
In this paper, we investigate RO from a novel feature generalization perspective.
arXiv Detail & Related papers (2023-10-01T07:57:03Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - Analysing the Performance of Stress Detection Models on Consumer-Grade
Wearable Devices [9.580380455705397]
Stress levels can provide valuable data for mental health analytics as well as labels for annotation systems.
There is a lack of research on the potential of using low-resolution Electrodermal Activity (EDA) signals from consumer-grade wearable devices to identify stress patterns.
arXiv Detail & Related papers (2022-03-18T00:36:27Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
We explore objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV)
We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling.
arXiv Detail & Related papers (2021-07-31T04:15:15Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - StressNet: Detecting Stress in Thermal Videos [10.453959171422147]
This paper presents a novel approach to obtaining physiological signals and classifying stress states from thermal video.
"StressNet" reconstructs the ISTI ( Initial Systolic Time Interval: a measure of change in cardiac sympathetic activity that is considered to be a quantitative index of stress humans.
A detailed evaluation demonstrates that StressNet estimated the ISTI signal with 95% accuracy and detect stress with average precision of 0.842.
arXiv Detail & Related papers (2020-11-18T20:47:23Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.