StressNet: Detecting Stress in Thermal Videos
- URL: http://arxiv.org/abs/2011.09540v2
- Date: Mon, 23 Nov 2020 18:38:23 GMT
- Title: StressNet: Detecting Stress in Thermal Videos
- Authors: Satish Kumar, A S M Iftekhar, Michael Goebel, Tom Bullock, Mary H.
MacLean, Michael B. Miller, Tyler Santander, Barry Giesbrecht, Scott T.
Grafton, B.S. Manjunath
- Abstract summary: This paper presents a novel approach to obtaining physiological signals and classifying stress states from thermal video.
"StressNet" reconstructs the ISTI ( Initial Systolic Time Interval: a measure of change in cardiac sympathetic activity that is considered to be a quantitative index of stress humans.
A detailed evaluation demonstrates that StressNet estimated the ISTI signal with 95% accuracy and detect stress with average precision of 0.842.
- Score: 10.453959171422147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise measurement of physiological signals is critical for the effective
monitoring of human vital signs. Recent developments in computer vision have
demonstrated that signals such as pulse rate and respiration rate can be
extracted from digital video of humans, increasing the possibility of
contact-less monitoring. This paper presents a novel approach to obtaining
physiological signals and classifying stress states from thermal video. The
proposed network--"StressNet"--features a hybrid emission representation model
that models the direct emission and absorption of heat by the skin and
underlying blood vessels. This results in an information-rich feature
representation of the face, which is used by spatio-temporal network for
reconstructing the ISTI ( Initial Systolic Time Interval: a measure of change
in cardiac sympathetic activity that is considered to be a quantitative index
of stress in humans ). The reconstructed ISTI signal is fed into a
stress-detection model to detect and classify the individual's stress state (
i.e. stress or no stress ). A detailed evaluation demonstrates that StressNet
achieves estimated the ISTI signal with 95% accuracy and detect stress with
average precision of 0.842. The source code is available on Github.
Related papers
- Stress Assessment with Convolutional Neural Network Using PPG Signals [0.22499166814992436]
This research is focused on developing a novel technique to assess stressful events using raw PPG signals recorded by Empatica E4 sensor.
An adaptive convolutional neural network (CNN) combined with Multilayer Perceptron (MLP) has been utilized to realize the detection of stressful events.
This research will use a dataset that is publicly available and named wearable stress and effect detection (WESAD)
arXiv Detail & Related papers (2024-10-16T06:24:16Z) - Stress Detection Using PPG Signal and Combined Deep CNN-MLP Network [0.20971479389679332]
This research work takes advantage of PPG signals to detect stress events.
The PPG signals used in this work are collected from one of the newest publicly available datasets named as UBFC-Phys.
The results obtained from the proposed model indicate that stress can be detected with an accuracy of approximately 82 percent.
arXiv Detail & Related papers (2024-10-10T13:38:55Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection [5.304745246313982]
This study explores the generalizability of machine learning models trained on HRV features for binary stress detection.
Our findings reveal a crucial factor affecting model generalizability: stressor type.
We recommend matching the stressor type when deploying HRV-based stress models in new environments.
arXiv Detail & Related papers (2024-05-06T14:47:48Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
arXiv Detail & Related papers (2024-01-23T16:49:54Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions.
Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications.
We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks.
arXiv Detail & Related papers (2022-12-14T21:39:15Z) - Analysing the Performance of Stress Detection Models on Consumer-Grade
Wearable Devices [9.580380455705397]
Stress levels can provide valuable data for mental health analytics as well as labels for annotation systems.
There is a lack of research on the potential of using low-resolution Electrodermal Activity (EDA) signals from consumer-grade wearable devices to identify stress patterns.
arXiv Detail & Related papers (2022-03-18T00:36:27Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Finding Patient Zero: Learning Contagion Source with Graph Neural
Networks [67.3415507211942]
Locating the source of an epidemic can provide critical insights into the infection's transmission course.
Existing methods use graph-theoretic measures and expensive message-passing algorithms.
We revisit this problem using graph neural networks (GNNs) to learn P0.
arXiv Detail & Related papers (2020-06-21T21:12:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.