Investigating the Generalizability of Physiological Characteristics of Anxiety
- URL: http://arxiv.org/abs/2402.15513v1
- Date: Tue, 23 Jan 2024 16:49:54 GMT
- Title: Investigating the Generalizability of Physiological Characteristics of Anxiety
- Authors: Emily Zhou, Mohammad Soleymani, Maja J. Matarić,
- Abstract summary: We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
- Score: 3.4036712573981607
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent works have demonstrated the effectiveness of machine learning (ML) techniques in detecting anxiety and stress using physiological signals, but it is unclear whether ML models are learning physiological features specific to stress. To address this ambiguity, we evaluated the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions. Specifically, we examine features extracted from electrocardiogram (ECG) and electrodermal (EDA) signals from the following three datasets: Anxiety Phases Dataset (APD), Wearable Stress and Affect Detection (WESAD), and the Continuously Annotated Signals of Emotion (CASE) dataset. We aim to understand whether these features are specific to anxiety or general to other high-arousal emotions through a statistical regression analysis, in addition to a within-corpus, cross-corpus, and leave-one-corpus-out cross-validation across instances of stress and arousal. We used the following classifiers: Support Vector Machines, LightGBM, Random Forest, XGBoost, and an ensemble of the aforementioned models. We found that models trained on an arousal dataset perform relatively well on a previously unseen stress dataset, and vice versa. Our experimental results suggest that the evaluated models may be identifying emotional arousal instead of stress. This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
Related papers
- Stress Assessment with Convolutional Neural Network Using PPG Signals [0.22499166814992436]
This research is focused on developing a novel technique to assess stressful events using raw PPG signals recorded by Empatica E4 sensor.
An adaptive convolutional neural network (CNN) combined with Multilayer Perceptron (MLP) has been utilized to realize the detection of stressful events.
This research will use a dataset that is publicly available and named wearable stress and effect detection (WESAD)
arXiv Detail & Related papers (2024-10-16T06:24:16Z) - Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection [5.304745246313982]
This study explores the generalizability of machine learning models trained on HRV features for binary stress detection.
Our findings reveal a crucial factor affecting model generalizability: stressor type.
We recommend matching the stressor type when deploying HRV-based stress models in new environments.
arXiv Detail & Related papers (2024-05-06T14:47:48Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - Analysing the Performance of Stress Detection Models on Consumer-Grade
Wearable Devices [9.580380455705397]
Stress levels can provide valuable data for mental health analytics as well as labels for annotation systems.
There is a lack of research on the potential of using low-resolution Electrodermal Activity (EDA) signals from consumer-grade wearable devices to identify stress patterns.
arXiv Detail & Related papers (2022-03-18T00:36:27Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Machine Learning Based Anxiety Detection in Older Adults using Wristband
Sensors and Context Feature [1.52292571922932]
The proposed method for anxiety detection combines features from a single physiological signal with an experimental context-based feature.
This work demonstrates the practicality of the proposed anxiety detection method in facilitating long-term monitoring of anxiety in older adults using low-cost consumer devices.
arXiv Detail & Related papers (2021-06-06T03:17:29Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - StressNet: Detecting Stress in Thermal Videos [10.453959171422147]
This paper presents a novel approach to obtaining physiological signals and classifying stress states from thermal video.
"StressNet" reconstructs the ISTI ( Initial Systolic Time Interval: a measure of change in cardiac sympathetic activity that is considered to be a quantitative index of stress humans.
A detailed evaluation demonstrates that StressNet estimated the ISTI signal with 95% accuracy and detect stress with average precision of 0.842.
arXiv Detail & Related papers (2020-11-18T20:47:23Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.