論文の概要: ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction
- arxiv url: http://arxiv.org/abs/2405.09567v1
- Date: Wed, 8 May 2024 19:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-19 13:49:26.413733
- Title: ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction
- Title(参考訳): ECG-SMART-NET : 閉塞性心筋梗塞の精密心電図診断のためのディープラーニングアーキテクチャ
- Authors: Nathan T. Riek, Murat Akcakaya, Zeineb Bouzid, Tanmay Gokhale, Stephanie Helman, Karina Kraevsky-Philips, Rui Qi Ji, Ervin Sejdic, Jessica K. Zègre-Hemsey, Christian Martin-Gill, Clifton W. Callaway, Samir Saba, Salah Al-Zaiti,
- Abstract要約: 心筋梗塞の診断にはECG--NETが有用である。
OMIは1つ以上の冠動脈の完全閉塞を特徴とする重度の心臓発作である。
OMI症例の3分の2は、12誘導心電図から視覚的に識別することが困難である。
- 参考スコア(独自算出の注目度): 1.7894680263068135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we describe ECG-SMART-NET for identification of occlusion myocardial infarction (OMI). OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries requiring immediate referral for cardiac catheterization to restore blood flow to the heart. Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram (ECG) and can be potentially fatal if not identified in a timely fashion. Previous works on this topic are scarce, and current state-of-the-art evidence suggests that both random forests with engineered features and convolutional neural networks (CNNs) are promising approaches to improve the ECG detection of OMI. While the ResNet architecture has been successfully adapted for use with ECG recordings, it is not ideally suited to capture informative temporal features within each lead and the spatial concordance or discordance across leads. We propose a clinically informed modification of the ResNet-18 architecture. The model first learns temporal features through temporal convolutional layers with 1xk kernels followed by a spatial convolutional layer, after the residual blocks, with 12x1 kernels to learn spatial features. The new ECG-SMART-NET was benchmarked against the original ResNet-18 and other state-of-the-art models on a multisite real-word clinical dataset that consists of 10,893 ECGs from 7,297 unique patients (rate of OMI = 6.5%). ECG-SMART-NET outperformed other models in the classification of OMI with a test AUC score of 0.889 +/- 0.027 and a test average precision score of 0.587 +/- 0.087.
- Abstract(参考訳): 本稿では,閉塞性心筋梗塞(OMI)の診断のためのECG-SMART-NETについて述べる。
OMIは、心臓への血流を回復するために、心臓カテーテルの即時紹介を必要とする1つ以上の冠状動脈の完全閉塞を特徴とする重度の心臓発作である。
OMI症例の3分の2は、12誘導心電図(ECG)から視覚的に識別することが困難であり、タイムリーな方法で同定しなければ致命的となる可能性がある。
このトピックに関するこれまでの研究は乏しく、現在の最先端の証拠は、エンジニアリングされた特徴を持つランダムな森林と畳み込みニューラルネットワーク(CNN)の両方が、OMIのECG検出を改善するための有望なアプローチであることを示唆している。
ResNetアーキテクチャはECG記録での使用に成功しているが、各リード内の情報的時間的特徴とリード間の空間的一致や不一致を捉えるのが理想的ではない。
本稿では,ResNet-18アーキテクチャの臨床的改良を提案する。
モデルはまず1xkのカーネルを持つ時間的畳み込み層を通して時間的特徴を学習し、その後12x1のカーネルで空間的特徴を学習する。
新しいECG-SMART-NETは、オリジナルのResNet-18や他の最先端モデルとベンチマークされ、マルチサイトリアルワードの臨床データセットで、7,297人のユニークな患者から10,893のECG(OMI = 6.5%)で構成された。
ECG-SMART-NETは、テストAUCスコアが0.889+/-0.027、テスト平均精度スコアが0.587+/-0.087で、OMIの分類において他のモデルよりも優れていた。
関連論文リスト
- Deep Learning Models for Arrhythmia Classification Using Stacked
Time-frequency Scalogram Images from ECG Signals [4.659427498118277]
本稿では,心電図に基づく不整脈分類のためのAI自動分類システムを提案する。
深層学習に基づく解法は心電図に基づく不整脈分類のために提案されている。
論文 参考訳(メタデータ) (2023-12-01T03:16:32Z) - Machine learning-based detection of cardiovascular disease using ECG
signals: performance vs. complexity [0.0]
本稿では心電図記録から心疾患を分類するための新しいアプローチを提案する。
最初のアプローチは、ECG信号とディープラーニングに基づく画像分類器のPoincare表現を提案する。
1D畳み込みモデル、特に1D ResNetは、CinC 2017とCinC 2020データセットの両方で最高の結果を示している。
論文 参考訳(メタデータ) (2023-03-10T12:47:46Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
本稿では,心電図に基づく心拍数型の自動分類アルゴリズムを提案する。
本稿では,2ストリームアーキテクチャを用いて,これに基づくECG認識の強化版を提案する。
MIT-BIH Arrhythmia Databaseの結果、提案アルゴリズムは99.38%の精度で実行されている。
論文 参考訳(メタデータ) (2022-10-05T08:14:51Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
本研究では,人工知能を用いた心房細動検出法を提案する。
本研究の目的は, 心臓科医と人工知能の診断精度をリードI心電図と比較することである。
論文 参考訳(メタデータ) (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。