論文の概要: AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification
- arxiv url: http://arxiv.org/abs/2411.13903v1
- Date: Thu, 21 Nov 2024 07:28:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:53.046572
- Title: AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification
- Title(参考訳): AmpliNetECG12:12リードECG分類のための軽量SoftMaxベースの相対論的振幅増幅アーキテクチャ
- Authors: Shreya Srivastava,
- Abstract要約: 本研究では,心臓の異常を迅速かつ正確に診断することを目的とした,新しいディープラーニングアーキテクチャを提案する。
我々は、ECG偏向の可視性を改善するために、aSoftMaxと呼ばれる新しいアクティベーション関数を考案した。
心臓疾患の診断では84%の異常な精度が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The urgent need to promptly detect cardiac disorders from 12-lead Electrocardiograms using limited computations is motivated by the heart's fast and complex electrical activity and restricted computational power of portable devices. Timely and precise diagnoses are crucial since delays might significantly impact patient health outcomes. This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately. We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections. The proposed activation function is used with Convolutional Neural Network architecture to includes kernel weight sharing across the ECG's various leads. This innovative method thoroughly generalizes the global 12-lead ECG features and minimizes the model's complexity by decreasing the trainable parameters. aSoftMax, combined with enhanced CNN architecture yielded AmpliNetECG12, we obtain exceptional accuracy of 84% in diagnosing cardiac disorders. AmpliNetECG12 shows outstanding prediction ability when used with the CPSC2018 dataset for arrhythmia classification. The model attains an F1-score of 80.71% and a ROC-AUC score of 96.00%, with 280,000 trainable parameters which signifies the lightweight yet efficient nature of AmpliNetECG12. The stochastic characteristics of aSoftMax, a fundamental element of AmpliNetECG12, improve prediction accuracy and also increasse the model's interpretability. This feature enhances comprehension of important ECG segments in different forms of arrhythmias, establishing a new standard of explainable architecture for cardiac disorder classification.
- Abstract(参考訳): 12誘導心電図から心臓障害を迅速に検出する緊急の必要性は、心臓の高速で複雑な電気活動と携帯機器の計算能力の制限によって動機付けられる。
遅れが患者の健康に重大な影響を及ぼす可能性があるため、タイムリーで正確な診断が重要である。
本研究では,心臓の異常を迅速かつ正確に診断することを目的とした,新しいディープラーニングアーキテクチャを提案する。
我々は、ECG偏向の可視性を改善するために、aSoftMaxと呼ばれる新しいアクティベーション関数を考案した。
提案したアクティベーション関数は、畳み込みニューラルネットワークアーキテクチャを用いて、ECGの様々なリード間でカーネルウェイト共有を含む。
この革新的な方法は、グローバルな12リードECG特徴を徹底的に一般化し、トレーニング可能なパラメータを減らし、モデルの複雑さを最小化する。
aSoftMaxとAmpliNetECG12を併用して心疾患の診断に84%の精度が得られた。
AmpliNetECG12は、不整脈分類のためのCPSC2018データセットを使用すると、優れた予測能力を示す。
モデルはF1スコア80.71%、ROC-AUCスコア96.00%に達し、AmpliNetECG12の軽量で効率的な性質を示す280,000のトレーニング可能なパラメータを持つ。
AmpliNetECG12の基本要素であるaSoftMaxの確率的特性は、予測精度を改善し、モデルの解釈可能性を向上させる。
この特徴は、不整脈の様々な形態における重要な心電図セグメントの理解を高め、心疾患分類のための新しい説明可能なアーキテクチャの標準を確立する。
関連論文リスト
- Compact Neural Network Algorithm for Electrocardiogram Classification [0.0]
不整脈の自動分類のための小型心電図システムを提案する。
このシステムはMIT-BIH不整脈データベース上で97.36%の精度を達成する。
論文 参考訳(メタデータ) (2024-12-19T19:55:22Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECGは、単誘導データから6誘導心電図を再構成するための説明可能かつ資源効率のよい方法である。
我々は、ConvexECGがより大きなニューラルネットワークに匹敵する精度を実現し、計算オーバーヘッドを大幅に削減することを示した。
論文 参考訳(メタデータ) (2024-09-19T06:14:30Z) - ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction [1.7894680263068135]
心筋梗塞の診断にはECG--NETが有用である。
OMIは1つ以上の冠動脈の完全閉塞を特徴とする重度の心臓発作である。
OMI症例の3分の2は、12誘導心電図から視覚的に識別することが困難である。
論文 参考訳(メタデータ) (2024-05-08T19:59:16Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications [2.0999222360659604]
ハイブリッド機能と3つの異なるモデルを用いたECG分類の性能向上を示す。
この研究で提案されたRR間隔の特徴に基づくモデルでは、98.98%の精度が達成され、ベースラインモデルよりも改善された。
周波数特性とRR間隔特性を組み合わせた別のモデルが開発され、ノイズ環境下での良好な持続性能で99%の精度で達成された。
論文 参考訳(メタデータ) (2022-06-14T12:14:40Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
12誘導心電図記録における心不整脈のマルチラベル分類のためのディープニューラルネットワークを開発した。
提案モデルでは、受信機動作特性曲線(AUC)0.970、F1スコア0.813の平均領域を達成した。
最も優れたリードは、12のリードのうち、リードI、aVR、V5である。
論文 参考訳(メタデータ) (2020-10-20T14:51:00Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。