論文の概要: GaitMotion: A Multitask Dataset for Pathological Gait Forecasting
- arxiv url: http://arxiv.org/abs/2405.09569v1
- Date: Thu, 9 May 2024 14:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-19 13:49:26.407906
- Title: GaitMotion: A Multitask Dataset for Pathological Gait Forecasting
- Title(参考訳): GaitMotion: 病的歩行予測のためのマルチタスクデータセット
- Authors: Wenwen Zhang, Hao Zhang, Zenan Jiang, Jing Wang, Amir Servati, Peyman Servati,
- Abstract要約: GaitMotionは、ウェアラブルセンサーを活用するデータセットで、患者のリアルタイムな動きを病理学的な歩行で捉えます。
このデータセットは、ステップ/ストライドのセグメンテーションやステップ/ストライドの長さの予測など、複数のタスクに対して、広範な地上構造ラベリングを提供する。
このウェアラブル歩行分析スーツは、正常と病理の両方の歩行周期、パターン、パラメータをキャプチャする。
- 参考スコア(独自算出の注目度): 8.305371944195384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gait benchmark empowers uncounted encouraging research fields such as gait recognition, humanoid locomotion, etc. Despite the growing focus on gait analysis, the research community is hindered by the limitations of the currently available databases, which mostly consist of videos or images with limited labeling. In this paper, we introduce GaitMotion, a multitask dataset leveraging wearable sensors to capture the patients' real-time movement with pathological gait. This dataset offers extensive ground-truth labeling for multiple tasks, including step/stride segmentation and step/stride length prediction, empowers researchers with a more holistic understanding of gait disturbances linked to neurological impairments. The wearable gait analysis suit captures the gait cycle, pattern, and parameters for both normal and pathological subjects. This data may prove beneficial for healthcare products focused on patient progress monitoring and post-disease recovery, as well as for forensics technologies aimed at person reidentification, and biomechanics research to aid in the development of humanoid robotics. Moreover, the analysis has considered the drift in data distribution across individual subjects. This drift can be attributed to each participant's unique behavioral habits or potential displacement of the sensor. Stride length variance for normal, Parkinson's, and stroke patients are compared to recognize the pathological walking pattern. As the baseline and benchmark, we provide an error of 14.1, 13.3, and 12.2 centimeters of stride length prediction for normal, Parkinson's, and Stroke gaits separately. We also analyzed the gait characteristics for normal and pathological gaits in terms of the gait cycle and gait parameters.
- Abstract(参考訳): Gaitベンチマークは、歩行認識、ヒューマノイドの移動など、未計算の奨励研究分野に権限を与える。
歩行分析に注目が集まっているにもかかわらず、研究コミュニティは、現在利用可能なデータベースの制限に悩まされている。
本稿では,ウェアラブルセンサを利用したマルチタスク・データセットであるGaitMotionを紹介する。
このデータセットは、ステップ/ストライドのセグメンテーションやステップ/ストライドの長さの予測など、複数のタスクに対して広範な地道ラベルを提供する。
このウェアラブル歩行分析スーツは、正常と病理の両方の歩行周期、パターン、パラメータをキャプチャする。
このデータは、患者の進捗監視と退院後の回復に焦点を当てた医療製品や、人体再同定を目的とした法医学技術、ヒューマノイドロボットの開発を支援するバイオメカニクス研究に有効である可能性がある。
さらに,各被験者におけるデータ分布のドリフトを考慮した分析を行った。
このドリフトは、各参加者のユニークな行動習慣やセンサーの潜在的な変位に起因する可能性がある。
健常者,パーキンソン病,脳卒中患者のストライド長の変動は,病的歩行パターンを認識するために比較される。
基準線とベンチマークとして、正常、パーキンソン、ストロークの歩幅予測を別々に14.1、13.3、12.2cmの誤差を与える。
また,歩行周期および歩行パラメータから,正常歩行および病理歩行の歩行特性を解析した。
関連論文リスト
- Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification [2.1548132286330453]
最近研究者たちは、機械学習アルゴリズムの進歩を活用して、歩行変化の症状を検出することを試みた。
本稿では,翻訳を阻害するギャップを同定するための既存手法について分析する。
我々は,複数の病的歩行のカテゴリを確実に区別できるAMS-GCN (Asynchronous Multi-Stream Graph Convolutional Network) という強力なベースラインを提案する。
論文 参考訳(メタデータ) (2024-09-20T16:47:45Z) - Explainable AI and Machine Learning Towards Human Gait Deterioration
Analysis [0.0]
歩行データを客観的に分析し,臨床関連バイオマーカーと所見を関連づける。
physioNet.orgデータセット毎の98% F1 sc の分類精度と、組み合わせたphysioNetデータセットの95.5% F1スコアを達成する。
論文 参考訳(メタデータ) (2023-06-12T14:53:00Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
慢性的な痛みを持つ人は、特定の身体の動きを無意識に適応させ、怪我や追加の痛みから身を守る。
この相関関係を分析するための専用のベンチマークデータベースが存在しないため、日々の行動に影響を及ぼす可能性のある特定の状況の1つを検討した。
我々は、複数のオートエンコーダを組み込んだゲートリカレントユニット(GRU)と疎結合なリカレントニューラルネットワーク(s-RNN)のアンサンブルを提案した。
本手法は,痛みレベルと痛み関連行動の両方の分類において,最先端のアプローチよりも優れていることを示すいくつかの実験を行った。
論文 参考訳(メタデータ) (2022-12-20T12:56:28Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Exploratory Hidden Markov Factor Models for Longitudinal Mobile Health
Data: Application to Adverse Posttraumatic Neuropsychiatric Sequelae [6.0431675579125415]
外傷性神経精神医学の後遺症(APNS)は、外傷性曝露後、退役軍人や数百万人のアメリカ人の間で一般的である。
過去数十年にわたってAPNSで多くの研究が行われてきたが、基礎となる神経生物学的メカニズムの理解は限られている。
論文 参考訳(メタデータ) (2022-02-25T16:53:22Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - Stroke recovery phenotyping through network trajectory approaches and
graph neural networks [0.966840768820136]
トラジェクトリプロファイルクラスタリング (TPC) 法を用いて, NINDS tPAトライアルのデータを分析し, 異なる脳卒中回復パターンを同定する。
臨床的に関連のある脳卒中症候群と一致した3つの異なる脳卒中軌跡について検討した。
論文 参考訳(メタデータ) (2021-09-29T18:46:08Z) - Classification of Pathological and Normal Gait: A Survey [0.0]
歩行認識とは、コンピュータ科学分野における識別問題と呼ばれる用語である。
本稿では,個人間移動のパターンやモードに関するデータを収集・分析するための適切なメトリクス,デバイス,アルゴリズムの同定を目指す。
論文 参考訳(メタデータ) (2020-12-28T19:56:42Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。