論文の概要: VIGMA: An Open-Access Framework for Visual Gait and Motion Analytics
- arxiv url: http://arxiv.org/abs/2504.17960v2
- Date: Mon, 28 Apr 2025 20:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.58747
- Title: VIGMA: An Open-Access Framework for Visual Gait and Motion Analytics
- Title(参考訳): VIGMA: ビジュアルゲットとモーション分析のためのオープンソースフレームワーク
- Authors: Kazi Shahrukh Omar, Shuaijie Wang, Ridhuparan Kungumaraju, Tanvi Bhatt, Fabio Miranda,
- Abstract要約: VIGMAはオープンソースのビジュアル分析フレームワークで、計算ノートブックやPythonライブラリと統合されている。
このフレームワークは、疾患の進行を評価し、複数の患者群を比較するための分析機能をサポートしている。
- 参考スコア(独自算出の注目度): 1.6365758063056757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gait disorders are commonly observed in older adults, who frequently experience various issues related to walking. Additionally, researchers and clinicians extensively investigate mobility related to gait in typically and atypically developing children, athletes, and individuals with orthopedic and neurological disorders. Effective gait analysis enables the understanding of the causal mechanisms of mobility and balance control of patients, the development of tailored treatment plans to improve mobility, the reduction of fall risk, and the tracking of rehabilitation progress. However, analyzing gait data is a complex task due to the multivariate nature of the data, the large volume of information to be interpreted, and the technical skills required. Existing tools for gait analysis are often limited to specific patient groups (e.g., cerebral palsy), only handle a specific subset of tasks in the entire workflow, and are not openly accessible. To address these shortcomings, we conducted a requirements assessment with gait practitioners (e.g., researchers, clinicians) via surveys and identified key components of the workflow, including (1) data processing and (2) data analysis and visualization. Based on the findings, we designed VIGMA, an open-access visual analytics framework integrated with computational notebooks and a Python library, to meet the identified requirements. Notably, the framework supports analytical capabilities for assessing disease progression and for comparing multiple patient groups. We validated the framework through usage scenarios with experts specializing in gait and mobility rehabilitation. VIGMA is available at https://github.com/komar41/VIGMA.
- Abstract(参考訳): 歩行障害は高齢者によく見られ、歩行に関する様々な問題を経験する。
さらに、研究者や臨床医は、典型的には発達している子ども、アスリート、整形外科的・神経学的障害を持つ個人において、歩行に関連するモビリティを幅広く調査している。
効果的な歩行分析により、患者の移動とバランス制御の因果メカニズムの理解、移動性を改善するための調整された治療計画の開発、転倒リスクの低減、リハビリテーションの進行の追跡が可能になる。
しかし、データの多変量性、解釈すべき大量の情報、必要な技術的スキルにより、歩行データを解析することは複雑な作業である。
既存の歩行分析ツールはしばしば特定の患者グループ(例えば脳性麻痺)に限られており、ワークフロー全体において特定のタスクのサブセットしか処理せず、オープンにアクセスできない。
これらの問題点に対処するため,我々は,(1)データ処理,(2)データ解析と可視化を含むワークフローの重要コンポーネントを特定し,歩行実践者(研究者,臨床医など)を対象に,要求評価を行った。
この結果に基づいて,計算ノートブックとPythonライブラリを統合したオープンアクセスビジュアル分析フレームワークであるVIGMAを,その要求を満たすために設計した。
特に、このフレームワークは、疾患の進行を評価し、複数の患者群を比較するための分析機能をサポートしている。
歩行・移動リハビリを専門とする専門家による利用シナリオによる枠組みの検証を行った。
VIGMAはhttps://github.com/komar41/VIGMAで入手できる。
関連論文リスト
- Integrating Generative Artificial Intelligence in ADRD: A Framework for Streamlining Diagnosis and Care in Neurodegenerative Diseases [0.0]
臨床医の能力を高めることにより,大規模言語モデル (LLM) がより迅速な実践的応用を実現することを提案する。
我々は,LLMが患者と提供者の両方と効果的にコミュニケーションできる能力を活用する,責任あるAI統合のためのフレームワークを提案する。
このアプローチは、標準化された高品質のデータ収集を優先し、患者が遭遇するたびに学習するシステムを実現する。
論文 参考訳(メタデータ) (2025-02-06T19:09:11Z) - A Learnable Multi-views Contrastive Framework with Reconstruction Discrepancy for Medical Time-Series [8.741139851597364]
本稿では、関連するタスクから外部データを取り込み、AE-GANを利用して事前知識を抽出することを提案する。
マルチヘッドアテンション機構を統合し,異なる視点から表現を適応的に学習するフレームワークであるLMCFを紹介する。
3つのターゲットデータセットの実験により、我々の手法が他の7つのベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2025-01-30T14:20:11Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
我々は,人間行動分析のための計算駆動型データ探索を効率化するために,モジュール型でフレキシブルでユーザフレンドリなソフトウェアフレームワークを導入する。
我々の主な目的は、高度な計算方法論へのアクセスを民主化することであり、これにより研究者は、広範囲の技術的熟練を必要とせずに、詳細な行動分析を行うことができる。
論文 参考訳(メタデータ) (2024-07-18T11:28:52Z) - GaitMotion: A Multitask Dataset for Pathological Gait Forecasting [8.305371944195384]
GaitMotionは、ウェアラブルセンサーを活用するデータセットで、患者のリアルタイムな動きを病理学的な歩行で捉えます。
このデータセットは、ステップ/ストライドのセグメンテーションやステップ/ストライドの長さの予測など、複数のタスクに対して、広範な地上構造ラベリングを提供する。
このウェアラブル歩行分析スーツは、正常と病理の両方の歩行周期、パターン、パラメータをキャプチャする。
論文 参考訳(メタデータ) (2024-05-09T14:45:02Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Understanding metric-related pitfalls in image analysis validation [59.15220116166561]
この研究は、画像解析におけるバリデーションメトリクスに関連する落とし穴に関する情報にアクセスするための、初めての包括的な共通点を提供する。
バイオメディカル画像解析に焦点をあてるが、他の分野へ移行する可能性があるため、対処された落とし穴はアプリケーションドメイン全体にわたって一般化され、新しく作成されたドメインに依存しない分類に分類される。
論文 参考訳(メタデータ) (2023-02-03T14:57:40Z) - PosePipe: Open-Source Human Pose Estimation Pipeline for Clinical
Research [0.0]
我々は臨床現場で取得したデータに対して最先端のアルゴリズムの実行を容易にする人間のポーズ推定パイプラインを開発する。
本研究の目的は,新しいアルゴリズムの訓練ではなく,臨床・翻訳研究における最先端のポーズ推定アルゴリズムの活用を推し進めることである。
論文 参考訳(メタデータ) (2022-03-16T17:54:37Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。