Restless Bandit Problem with Rewards Generated by a Linear Gaussian Dynamical System
- URL: http://arxiv.org/abs/2405.09584v2
- Date: Wed, 22 May 2024 22:01:40 GMT
- Title: Restless Bandit Problem with Rewards Generated by a Linear Gaussian Dynamical System
- Authors: Jonathan Gornet, Bruno Sinopoli,
- Abstract summary: Decision-making under uncertainty is a fundamental problem encountered frequently and can be formulated as a multi-armed bandit problem.
We propose a method that takes a linear combination of previously observed rewards for predicting each action's next reward.
We show that, regardless of the sequence of previous actions chosen, the reward sampled for any previously chosen action can be used for predicting another action's future reward.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision-making under uncertainty is a fundamental problem encountered frequently and can be formulated as a stochastic multi-armed bandit problem. In the problem, the learner interacts with an environment by choosing an action at each round, where a round is an instance of an interaction. In response, the environment reveals a reward, which is sampled from a stochastic process, to the learner. The goal of the learner is to maximize cumulative reward. In this work, we assume that the rewards are the inner product of an action vector and a state vector generated by a linear Gaussian dynamical system. To predict the reward for each action, we propose a method that takes a linear combination of previously observed rewards for predicting each action's next reward. We show that, regardless of the sequence of previous actions chosen, the reward sampled for any previously chosen action can be used for predicting another action's future reward, i.e. the reward sampled for action 1 at round $t-1$ can be used for predicting the reward for action $2$ at round $t$. This is accomplished by designing a modified Kalman filter with a matrix representation that can be learned for reward prediction. Numerical evaluations are carried out on a set of linear Gaussian dynamical systems and are compared with 2 other well-known stochastic multi-armed bandit algorithms.
Related papers
- Walking the Values in Bayesian Inverse Reinforcement Learning [66.68997022043075]
Key challenge in Bayesian IRL is bridging the computational gap between the hypothesis space of possible rewards and the likelihood.
We propose ValueWalk - a new Markov chain Monte Carlo method based on this insight.
arXiv Detail & Related papers (2024-07-15T17:59:52Z) - Sparsity-Agnostic Linear Bandits with Adaptive Adversaries [19.84322270472381]
We study linear bandits where, in each round, the learner receives a set of actions (i.e., feature vectors) from which it chooses an element and obtains a reward.
The expected reward is a fixed but unknown linear function of the chosen action.
We study sparse regret bounds, that depend on the number $S$ of non-zero coefficients in the linear reward function.
arXiv Detail & Related papers (2024-06-03T10:54:58Z) - Variance-Dependent Regret Bounds for Non-stationary Linear Bandits [52.872628573907434]
We propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds.
We introduce two novel algorithms: Restarted Weighted$textOFUL+$ and Restarted $textSAVE+$.
Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary linear bandits under different settings.
arXiv Detail & Related papers (2024-03-15T23:36:55Z) - A New Look at Dynamic Regret for Non-Stationary Stochastic Bandits [11.918230810566945]
We study the non-stationary multi-armed bandit problem, where the reward statistics of each arm may change several times during the course of learning.
We propose a method that achieves, in $K$-armed bandit problems, a near-optimal $widetilde O(sqrtK N(S+1))$ dynamic regret.
arXiv Detail & Related papers (2022-01-17T17:23:56Z) - Top $K$ Ranking for Multi-Armed Bandit with Noisy Evaluations [102.32996053572144]
We consider a multi-armed bandit setting where, at the beginning of each round, the learner receives noisy independent evaluations of the true reward of each arm.
We derive different algorithmic approaches and theoretical guarantees depending on how the evaluations are generated.
arXiv Detail & Related papers (2021-12-13T09:48:54Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - Adaptive Algorithms for Multi-armed Bandit with Composite and Anonymous
Feedback [32.62857394584907]
We study the multi-armed bandit (MAB) problem with composite and anonymous feedback.
We propose adaptive algorithms for both the adversarial and non- adversarial cases.
arXiv Detail & Related papers (2020-12-13T12:25:41Z) - DORB: Dynamically Optimizing Multiple Rewards with Bandits [101.68525259222164]
Policy-based reinforcement learning has proven to be a promising approach for optimizing non-differentiable evaluation metrics for language generation tasks.
We use the Exp3 algorithm for bandits and formulate two approaches for bandit rewards: (1) Single Multi-reward Bandit (SM-Bandit); (2) Hierarchical Multi-reward Bandit (HM-Bandit)
We empirically show the effectiveness of our approaches via various automatic metrics and human evaluation on two important NLG tasks.
arXiv Detail & Related papers (2020-11-15T21:57:47Z) - Predictive Bandits [68.8204255655161]
We introduce and study a new class of bandit problems, referred to as predictive bandits.
In each round, the decision maker first decides whether to gather information about the rewards of particular arms.
The decision maker then selects an arm to be actually played in the round.
arXiv Detail & Related papers (2020-04-02T17:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.